Back to Search Start Over

An open-access computer image analysis (CIA) method to predict meat and fat content from an android smartphone-derived picture of the bovine 5th-6th rib

Authors :
J. Normand
Benjamin Albouy-Kissi
Didier Micol
Bruno Meunier
Mohammed El Jabri
Muriel Bonnet
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Unité Mixte de Recherche sur les Herbivores - UMR 1213 (UMRH)
VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Agrapole
Institut supérieur d'agriculture et d'agroalimentaire Rhône-Alpes (ISARA)
Université Grenoble Alpes - UFR Médecine (UGA UFRM)
Université Grenoble Alpes (UGA)
Institut Pascal (IP)
SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques Blaise Pascal (LMBP)
Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Centre National de la Recherche Scientifique (CNRS)
VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Isara
Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne)
Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA)
Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)
Source :
Methods, Methods, Elsevier, 2020, ⟨10.1016/j.ymeth.2020.06.023⟩, Methods, Elsevier, 2020, 175, pp.105996. ⟨10.1016/j.ymeth.2020.06.023⟩, Methods, 2021, 186, pp.79-89. ⟨10.1016/j.ymeth.2020.06.023⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; Marbling and rib composition are important attributes related to carcass yields and values, beef quality, consumer satisfaction and purchasing decisions. An open-access computer image analysis method based on a fresh beef rib image captured under nonstandardized and uncontrolled conditions was developed to determine the intramuscular, intermuscular and total fat content. For this purpose, cross-section images of the 5th-6th rib from 130 bovine carcasses were captured with a Galaxy S8 smartphone. The pictures were analyzed with a program developed using ImageJ open source software. The 17 processed image features that were obtained were mined relative to gold standard measures, namely, intermuscular fat, total fat and muscles dissected from a rib and weighed, and intramuscular fat content (IMF - marbling) determined by the Soxhlet method. The best predictions with the lowest prediction errors were obtained by the sparse partial least squares method for both IMF percent and rib composition and from a combination of animal and image analysis features captured from the caudal face of the 6th rib captured on a table. These predictions were more accurate than those based on animal and image analysis features captured from the caudal face of the 5th rib on hanging carcasses. The external-validated prediction precision was 90% for IMF and ranged from 71 to 86% for the total fat, intermuscular and muscle rib weight ratios. Therefore, an easy, low-cost, user-friendly and rapid method based on a smartphone picture from the 6th rib of bovine carcasses provides an accurate method for fat content determination.

Details

Language :
English
ISSN :
10462023 and 10959130
Database :
OpenAIRE
Journal :
Methods, Methods, Elsevier, 2020, ⟨10.1016/j.ymeth.2020.06.023⟩, Methods, Elsevier, 2020, 175, pp.105996. ⟨10.1016/j.ymeth.2020.06.023⟩, Methods, 2021, 186, pp.79-89. ⟨10.1016/j.ymeth.2020.06.023⟩
Accession number :
edsair.doi.dedup.....7cfe4c269448cd99adbf5e617d4e9dad
Full Text :
https://doi.org/10.1016/j.ymeth.2020.06.023⟩