Back to Search Start Over

An iron oxide nanoworm hybrid on an interdigitated microelectrode silica surface to detect abdominal aortic aneurysms

Authors :
Mei Ding
Chang Li
Periasamy Anbu
Guangjun Yan
Subash C. B. Gopinath
Xingyu Hong
Qingchun Li
Source :
Microchimica Acta. 188
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

An abdominal aortic aneurysm (AAA) is abnormal swelling in the abdominal aorta and a prevalent life-threatening disease. This research introduces a new interdigitated microelectrode (IDME)-sensing surface modified by iron oxide nanoworms (IONWs) for detecting the AAA biomarker insulin-like growth factor-1 (IGF1). A sandwich pattern was formulated with the IGF1 aptamer and IGFBP1 (IGF binding protein-1) on the IONW-constructed IDME hybrid to identify IGF1. The surface morphology of the IONWs revealed a uniform distribution of worm-like structures (80–100 nm) as confirmed by FESEM and FETEM analyses. Further, the presence of the major elements, Fe and O, was confirmed by EDX and XPS studies. The crystal planes that appeared in the IONW reflect cubic magnetite. IONW-modified IDME attained a limit of detection for IGF1 of 1 fM (3σ) with an aptamer-IGF1-IGFBP1 sandwich. This sandwich with IGFBP1 enhanced the current level at all concentrations of IGF1 and displayed linearity in the range 1 fM to 100 pM with a determination coefficient of R2 = 0.9373 [y = 3.38221x – 4.79]. Control experiments with complementary aptamer sequences, IGF2 and IGFBP3 did not show notable signal changes, indicating the specific detection of IGF1. This IONW constructed electrode helps to achieve the detection of low amounts of IGF1 and diagnose AAA at the stage prior to rupture.

Details

ISSN :
14365073 and 00263672
Volume :
188
Database :
OpenAIRE
Journal :
Microchimica Acta
Accession number :
edsair.doi.dedup.....7d21f6205cbe9e3aa6b486d8db42b4d5
Full Text :
https://doi.org/10.1007/s00604-021-04836-8