Back to Search Start Over

DropLasso: A robust variant of Lasso for single cell RNA-seq data

Authors :
Khalfaoui, Beyrem
Vert, Jean-Philippe
Centre de Bioinformatique (CBIO)
MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Cancer et génome: Bioinformatique, biostatistiques et épidémiologie d'un système complexe
Institut Curie [Paris]-MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Département de Mathématiques et Applications - ENS Paris (DMA)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
MINES ParisTech - École nationale supérieure des mines de Paris-PSL Research University (PSL)
Cancer et génôme: Bioinformatique, biostatistiques et épidémiologie d'un système complexe
MINES ParisTech - École nationale supérieure des mines de Paris-Institut Curie-Institut National de la Santé et de la Recherche Médicale (INSERM)
École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

Single-cell RNA sequencing (scRNA-seq) is a fast growing approach to measure the genome-wide transcriptome of many individual cells in parallel, but results in noisy data with many dropout events. Existing methods to learn molecular signatures from bulk transcriptomic data may therefore not be adapted to scRNA-seq data, in order to automatically classify individual cells into predefined classes. We propose a new method called DropLasso to learn a molecular signature from scRNA-seq data. DropLasso extends the dropout regularisation technique, popular in neural network training, to esti- mate sparse linear models. It is well adapted to data corrupted by dropout noise, such as scRNA-seq data, and we clarify how it relates to elastic net regularisation. We provide promising results on simulated and real scRNA-seq data, suggesting that DropLasso may be better adapted than standard regularisa- tions to infer molecular signatures from scRNA-seq data.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....7d74b4d36192a73eef07acc3609b93c8