Back to Search Start Over

Channel selection over riemannian manifold with non-stationarity consideration for brain-computer interface applications

Authors :
Léa Pillette
Thibaut Monseigne
Khadijeh Sadatnejad
Fabien Lotte
Aline Roc
Aurélien Appriou
Popular interaction with 3d content (Potioc)
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
European Project: 714567 ,H2020 Pilier ERC,BrainConquest(2017)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Inria Bordeaux - Sud-Ouest
Sadatnejad, Khadijeh
Boosting Brain-Computer Communication with high Quality User Training - BrainConquest - - H2020 Pilier ERC2017-07-01 - 2022-06-30 - 714567 - VALID
Source :
ICASSP2020-45th International Conference on Acoustics, Speech, and Signal Processing, ICASSP2020-45th International Conference on Acoustics, Speech, and Signal Processing, May 2020, Barcelona, Spain, HAL, ICASSP
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; In this paper, we propose and compare multiple criteria for selecting ElectroEncephaloGraphic (EEG) channels over the Riemannian manifold, for EEG classification in Brain-Computer Interfaces (BCI). These criteria aim to promote EEG covariance matrix classifiers to generalize well by considering EEG data non-stationarity. Our approach consists of both increasing the discriminative information between classes over the manifold and reducing the dispersion within classes. We also reduce the influence of outliers in both discriminative and dispersion measures. Using the proposed criteria, channel selection is done automatically in a backward elimination process. The criteria are evaluated on EEG signals recorded from a tetraplegic subject and dataset IVa from BCI competition III. Experimental evidences confirm that considering the dispersion within each class as a measure for quantifying the effects of non-stationarity and removing the most affected channels can improve the performance of BCI by 5% on the tetraplegic subject and by 12 % on dataset IVa.

Details

Language :
English
Database :
OpenAIRE
Journal :
ICASSP2020-45th International Conference on Acoustics, Speech, and Signal Processing, ICASSP2020-45th International Conference on Acoustics, Speech, and Signal Processing, May 2020, Barcelona, Spain, HAL, ICASSP
Accession number :
edsair.doi.dedup.....7d880304caeb01468e2d7da7a5e5f681