Back to Search Start Over

Complex Regulation of the Cyclin-Dependent Kinase Inhibitor p27kip1 in Thyroid Cancer Cells by the PI3K/AKT Pathway

Authors :
Emiliano A. Palmieri
Giuseppe Viglietto
Maria Letizia Motti
Daniela Califano
Carmela De Marco
Ilenia Migliaccio
Lucio Palombini
Giancarlo Troncone
Luciano Pezzullo
Alfredo Fusco
Maria Letizia, Motti
Daniela, Califano
Troncone, Giancarlo
Carmela De, Marco
Ilenia, Migliaccio
Emiliano, Palmieri
Luciano, Pezzullo
Palombini, Lucio
Fusco, Alfredo
Giuseppe, Viglietto
Publication Year :
2005

Abstract

Functional inactivation of the tumor suppressor p27 kip1 in human cancer occurs either through loss of expression or through phosphorylation-dependent cytoplasmic sequestration. Here we demonstrate that dysregulation of the PI3K/AKT pathway is important in thyroid carcinogenesis and that p27 kip1 is a key target of the growth-regulatory activity exerted by this pathway in thyroid cancer cells. Using specific PI3K inhibitors (LY294002, wortmannin, and PTEN) and a dominant active AKT construct (myrAKT), we demonstrated that the PI3K/AKT pathway controlled thyroid cell proliferation by regulating the expression and subcellular localization of p27. Results obtained with phospho-specific antibodies and with transfection of nonphosphorylable p27 kip1 mutant constructs demonstrated that PI3K/AKT-dependent regulation of p27 kip1 mislocalization in thyroid cancer cells occurred via phosphorylation of p27 kip1 at T157 and T198 (but not at S10 or T187). Finally, we evaluated whether these results were applicable to human tumors. Analysis of 100 thyroid carcinomas indicated that p27 kip1 phosphorylation at T157/T198 and cytoplasmic mislocalization were preferentially associated with activation of the PI3K/AKT pathway. Thus the PI3/AKT pathway and its effector p27 kip1 play major roles in thyroid carcinogenesis.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....7d8cf0c926ef70d1d0a8c8f02c63cd5f