Back to Search Start Over

The Effect of Particle Size Distributions on the Microstructural Evolution During Sintering

Authors :
Henrik Lund Frandsen
Nini Pryds
Veena Tikare
Rasmus Bjørk
Source :
Bjørk, R, Tikare, V, Frandsen, H L & Pryds, N 2013, ' The effect of particle size distributions on the microstructural evolution during sintering ', Journal of the American Ceramic Society, vol. 96, no. 1, pp. 103-110 . https://doi.org/10.1111/jace.12100
Publication Year :
2012
Publisher :
Wiley, 2012.

Abstract

Microstructural evolution and sintering behavior of powder compacts composed of spherical particles with different particle size distributions (PSDs) were simulated using a kinetic Monte Carlo model of solid state sintering. Compacts of monosized particles, normal PSDs with fixed mean particle radii and a range of standard deviations, and log-normal PSDs with fixed mode and a range of skewness values were studied. Densification rate and final relative density were found to be inversely proportional to initial PSD width. Grain growth was faster during the early stages of sintering for broad PSDs, but the final grain sizes were smaller. These behaviors are explained by the smallest grains in the broader PSDs being consumed very quickly by larger neighboring grains. The elimination of the small grains reduces both the total number of necks and the neck area between particles, which in turn reduces the regions where vacancies can be annihilated, leading to slower densification rates. The loss of neck area causes grain growth by surface diffusion to become the dominant microstructural evolution mechanism, leading to poor densification. Finally, pore size was shown to increase with the width of PSDs, which also contributes to the lower densification rates.

Details

ISSN :
00027820
Volume :
96
Database :
OpenAIRE
Journal :
Journal of the American Ceramic Society
Accession number :
edsair.doi.dedup.....7d9dd3c632ddf33405c0d470e77c47c2
Full Text :
https://doi.org/10.1111/jace.12100