Back to Search
Start Over
Convergence of the Lagrange–Galerkin method for a fluid–rigid system
- Source :
- COMPTES RENDUS. MATHEMATIQUE, Artículos CONICYT, CONICYT Chile, instacron:CONICYT, Comptes rendus de l'Académie des sciences. Série I, Mathématique, Comptes rendus de l'Académie des sciences. Série I, Mathématique, Elsevier, 2004, 339 (1), pp.59-64
- Publication Year :
- 2004
- Publisher :
- Elsevier BV, 2004.
-
Abstract
- In this Note, we consider a Lagrange–Galerkin scheme to approximate a two dimensional fluid–rigid body problem. The system is modelled by the incompressible Navier–Stokes equations in the fluid part, coupled with ordinary differential equations for the dynamics of the rigid body. In this problem, the equations of the fluid are written in a domain whose variation is one of the unknowns. We introduce a numerical method based on the use of characteristics and on finite elements with a fixed mesh. Our main result asserts the convergence of this scheme. To cite this article: J. San Martin et al., C. R. Acad. Sci. Paris, Ser. I 339 (2004).
- Subjects :
- Differential equation
Numerical analysis
010102 general mathematics
Mathematical analysis
010103 numerical & computational mathematics
General Medicine
Rigid body
01 natural sciences
Finite element method
Physics::Fluid Dynamics
Pressure-correction method
Ordinary differential equation
Convergence (routing)
0101 mathematics
Galerkin method
[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
Mathematics
Subjects
Details
- ISSN :
- 1631073X and 07644442
- Volume :
- 339
- Database :
- OpenAIRE
- Journal :
- Comptes Rendus Mathematique
- Accession number :
- edsair.doi.dedup.....7dc92874c68b122d0ff3c82f723951e6
- Full Text :
- https://doi.org/10.1016/j.crma.2004.04.007