Back to Search Start Over

Localization and multiplicity in the homogenization of nonlinear problems

Authors :
Radu Precup
Renata Bunoiu
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)
Babes-Bolyai University [Cluj-Napoca] (UBB)
Source :
Advances in Nonlinear Analysis, Advances in Nonlinear Analysis, De Gruyter, 2019, 9 (1), pp.292-304. ⟨10.1515/anona-2020-0001⟩, Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 292-304 (2019)
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

We propose a method for the localization of solutions for a class of nonlinear problems arising in the homogenization theory. The method combines concepts and results from the linear theory of PDEs, linear periodic homogenization theory, and nonlinear functional analysis. Particularly, we use the Moser-Harnack inequality, arguments of fixed point theory and Ekeland's variational principle. A significant gain in the homogenization theory of nonlinear problems is that our method makes possible the emergence of finitely or infinitely many solutions.

Details

Language :
English
ISSN :
2191950X
Database :
OpenAIRE
Journal :
Advances in Nonlinear Analysis, Advances in Nonlinear Analysis, De Gruyter, 2019, 9 (1), pp.292-304. ⟨10.1515/anona-2020-0001⟩, Advances in Nonlinear Analysis, Vol 9, Iss 1, Pp 292-304 (2019)
Accession number :
edsair.doi.dedup.....7e014d6f2802e4b51062bd3aecc1e2dc
Full Text :
https://doi.org/10.1515/anona-2020-0001⟩