Back to Search Start Over

Adaptive Approximate Bayesian Computational Particle Filters for Underwater Terrain Aided Navigation

Authors :
Palmier, C.
Karim Dahia
Merlinge, N.
Del Moral, P.
Laneuville, D.
Musso, C.
DTIS, ONERA, Université Paris Saclay (COmUE) [Palaiseau]
ONERA-Université Paris Saclay (COmUE)
Quality control and dynamic reliability (CQFD)
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Naval Group
DTIS, ONERA, Université Paris Saclay [Palaiseau]
ONERA-Université Paris-Saclay
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Source :
FUSION 2019-International Conference on Information Fusion, FUSION 2019-International Conference on Information Fusion, Jul 2019, Ottawa, Canada, Scopus-Elsevier
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; To perform long-term and long-range missions, underwater vehicles need reliable navigation algorithms. This paper considers multi-beam Terrain Aided Navigation which can provide a drift-free navigation tool. This leads to an estimation problem with implicit observation equation and unknown likelihood. Indeed, the measurement sensor is considered to be a numerical black box model that introduces some unknown stochastic noise. We introduce a measurement updating procedure based on an adaptive kernel derived from Approximate Bayesian Computational filters. The proposed method is based on two well-known particle filters: Regularized Particle Filter and Rao-Blackwellized Particle Filter. Numerical results are presented and the robustness is demonstrated with respect to the original filters, yielding to twice as less non-convergence cases. The proposed method increases the robustness of particle-like filters while remaining computationally efficient.

Details

Language :
English
Database :
OpenAIRE
Journal :
FUSION 2019-International Conference on Information Fusion, FUSION 2019-International Conference on Information Fusion, Jul 2019, Ottawa, Canada, Scopus-Elsevier
Accession number :
edsair.doi.dedup.....7e2bb9d104b14d0d7bafe32cb040f57d