Back to Search Start Over

Hyperspectral Image Super-Resolution via Deep Spatiospectral Attention Convolutional Neural Networks

Authors :
Gemine Vivone
Jocelyn Chanussot
Jin-Fan Hu
Ting-Zhu Huang
Tai-Xiang Jiang
Liang-Jian Deng
University of Electronic Science and Technology of China [Chengdu] (UESTC)
Southwestern University of Finance and Economics [Chengdu, China]
Institute of Methodologies for Environmental Analysis of the National Research Council (IMAA)
National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR)
GIPSA - Signal Images Physique (GIPSA-SIGMAPHY)
GIPSA Pôle Sciences des Données (GIPSA-PSD)
Grenoble Images Parole Signal Automatique (GIPSA-lab)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Grenoble Alpes (UGA)
Apprentissage de modèles à partir de données massives (Thoth)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK)
Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019)
Source :
IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (12), pp.7251-7265. ⟨10.1109/TNNLS.2021.3084682⟩
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

International audience; Hyperspectral images (HSIs) are of crucial importance in order to better understand features from a large number of spectral channels. Restricted by its inner imaging mechanism, the spatial resolution is often limited for HSIs. To alleviate this issue, in this work, we propose a simple and efficient architecture of deep convolutional neural networks to fuse a low-resolution HSI (LR-HSI) and a high-resolution multispectral image (HR-MSI), yielding a high-resolution HSI (HR-HSI). The network is designed to preserve both spatial and spectral information thanks to a new architecture based on: 1) the use of the LR-HSI at the HR-MSI’s scale to get an output with satisfied spectral preservation and 2) the application of the attention and pixelShuffle modules to extract information, aiming to output high-quality spatial details. Finally, a plain mean squared error loss function is used to measure the performance during the training. Extensive experiments demonstrate that the proposed network architecture achieves the best performance (both qualitatively and quantitatively) compared with recent state-of-the-art HSI super-resolution approaches. Moreover, other significant advantages can be pointed out by the use of the proposed approach, such as a better network generalization ability, a limited computational burden, and the robustness with respect to the number of training samples. Please find the source code and pretrained models from https://liangjiandeng.github.io/Projects_Res/HSRnet_2021tnnls.html .

Details

ISSN :
21622388 and 2162237X
Volume :
33
Database :
OpenAIRE
Journal :
IEEE Transactions on Neural Networks and Learning Systems
Accession number :
edsair.doi.dedup.....7e509a5300ffb3497941baadc330f4c0
Full Text :
https://doi.org/10.1109/tnnls.2021.3084682