Back to Search Start Over

Linear resistivity and Sachdev-Ye-Kitaev (SYK) spin liquid behavior in a quantum critical metal with spin-1/2 fermions

Authors :
Nils Wentzell
Antoine Georges
Olivier Parcollet
Eun-Ah Kim
Peter Cha
Source :
Proceedings of the National Academy of Sciences of the United States of America
Publication Year :
2020
Publisher :
Proceedings of the National Academy of Sciences, 2020.

Abstract

Significance In “Planckian metals,” electrons dissipate energy at the fastest possible rate allowed by the fundamental laws of quantum mechanics, resulting in a linear temperature dependence of their electrical resistivity. Although observed for a number of quantum materials, this phenomenon lacks a general theoretical understanding and is often considered as one of the prominent fundamental questions in condensed matter physics. Here, we show that Planckian dissipation and a behavior consistent with the “marginal Fermi liquid” phenomenology emerge in the quantum critical regime separating a Mott insulating spin glass and a Fermi liquid. By establishing this behavior in an explicit model solvable by state-of-the-art computational methods, our theory paves the way toward a deeper understanding of Planckian or “strange” metals.<br />“Strange metals” with resistivity depending linearly on temperature T down to low T have been a long-standing puzzle in condensed matter physics. Here, we consider a lattice model of itinerant spin-1/2 fermions interacting via onsite Hubbard interaction and random infinite-ranged spin–spin interaction. We show that the quantum critical point associated with the melting of the spin-glass phase by charge fluctuations displays non-Fermi liquid behavior, with local spin dynamics identical to that of the Sachdev-Ye-Kitaev family of models. This extends the quantum spin liquid dynamics previously established in the large-M limit of SU(M) symmetric models to models with physical SU(2) spin-1/2 electrons. Remarkably, the quantum critical regime also features a Planckian linear-T resistivity associated with a T-linear scattering rate and a frequency dependence of the electronic self-energy consistent with the marginal Fermi liquid phenomenology.

Details

ISSN :
10916490 and 00278424
Volume :
117
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....7effc69abfdf516cce8bf806e3ad3acc
Full Text :
https://doi.org/10.1073/pnas.2003179117