Back to Search Start Over

A probabilistic algorithm to test local algebraic observability in polynomial time

Authors :
Alexandre Sedoglavic
Algebra for Digital Identification and Estimation (ALIEN)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Centrale Lille-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Informatique Fondamentale de Lille (LIFL)
Université de Lille, Sciences et Technologies-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lille, Sciences Humaines et Sociales-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Symbolic Computation, Journal of Symbolic Computation, Elsevier, 2002, 33 (5), pp.735-755. ⟨10.1006/jsco.2002.0532⟩, International Symposium on Symbolic and Algebraic Computation, International Symposium on Symbolic and Algebraic Computation, Jul 2001, London, Ontorio, Canada, ISSAC, Scopus-Elsevier, Journal of Symbolic Computation, 2002, 33 (5), pp.735-755. ⟨10.1006/jsco.2002.0532⟩
Publication Year :
2002
Publisher :
HAL CCSD, 2002.

Abstract

The following questions are often encountered in system and control theory. Given an algebraic model of a physical process, which variables can be, in theory, deduced from the input-output behavior of an experiment? How many of the remaining variables should we assume to be known in order to determine all the others? These questions are parts of the \emph{local algebraic observability} problem which is concerned with the existence of a non trivial Lie subalgebra of the symmetries of the model letting the inputs and the outputs invariant. We present a \emph{probabilistic seminumerical} algorithm that proposes a solution to this problem in \emph{polynomial time}. A bound for the necessary number of arithmetic operations on the rational field is presented. This bound is polynomial in the \emph{complexity of evaluation} of the model and in the number of variables. Furthermore, we show that the \emph{size} of the integers involved in the computations is polynomial in the number of variables and in the degree of the differential system. Last, we estimate the probability of success of our algorithm and we present some benchmarks from our Maple implementation.<br />26 pages. A Maple implementation is available

Details

Language :
English
ISSN :
07477171 and 1095855X
Database :
OpenAIRE
Journal :
Journal of Symbolic Computation, Journal of Symbolic Computation, Elsevier, 2002, 33 (5), pp.735-755. ⟨10.1006/jsco.2002.0532⟩, International Symposium on Symbolic and Algebraic Computation, International Symposium on Symbolic and Algebraic Computation, Jul 2001, London, Ontorio, Canada, ISSAC, Scopus-Elsevier, Journal of Symbolic Computation, 2002, 33 (5), pp.735-755. ⟨10.1006/jsco.2002.0532⟩
Accession number :
edsair.doi.dedup.....7f3383555bb725478ce70a952cbef2fa
Full Text :
https://doi.org/10.1006/jsco.2002.0532⟩