Back to Search
Start Over
ECG Paper Record Digitization and Diagnosis Using Deep Learning
- Source :
- Journal of Medical and Biological Engineering
- Publication Year :
- 2020
- Publisher :
- Elsevier BV, 2020.
-
Abstract
- Purpose Electrocardiogram (ECG) is one of the most essential tools for detecting heart problems. Till today most of the ECG records are available in paper form. It can be challenging and time-consuming to manually assess the ECG paper records. Hence, automated diagnosis and analysis are possible if we digitize such paper ECG records. Methods The proposed work aims to convert ECG paper records into a 1-D signal and generate an accurate diagnosis of heart-related problems using deep learning. Camera-captured ECG images or scanned ECG paper records are used for the proposed work. Effective pre-processing techniques are used for the removal of shadow from the images. A deep learning model is used to get a threshold value that separates ECG signal from its background and after applying various image processing techniques threshold ECG image gets converted into digital ECG. These digitized 1-D ECG signals are then passed to another deep learning model for the automated diagnosis of heart diseases into different classes such as ST-segment elevation myocardial infarction (STEMI), Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), and T-wave abnormality. Results The accuracy of deep learning-based binarization is 97%. Further deep learning-based diagnosis approach of such digitized paper ECG records was having an accuracy of 94.4%. Conclusions The digitized ECG signals can be useful to various research organizations because the trends in heart problems can be determined and diagnosed from preserved paper ECG records. This approach can be easily implemented in areas where such expertise is not available. Supplementary Information The online version contains supplementary material available at 10.1007/s40846-021-00632-0.
- Subjects :
- Computer science
0206 medical engineering
Biomedical Engineering
Image processing
02 engineering and technology
Data_CODINGANDINFORMATIONTHEORY
030218 nuclear medicine & medical imaging
03 medical and health sciences
0302 clinical medicine
Diagnosis
medicine
ComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMS
Computer vision
Paper ECG
Digitization
Left bundle branch block
business.industry
Deep learning
Pattern recognition
General Medicine
Right bundle branch block
medicine.disease
020601 biomedical engineering
ComputingMethodologies_PATTERNRECOGNITION
Original Article
Artificial intelligence
Ecg signal
business
Subjects
Details
- ISSN :
- 15565068
- Database :
- OpenAIRE
- Journal :
- SSRN Electronic Journal
- Accession number :
- edsair.doi.dedup.....7f54c8743fb06309ddb78974ce99a4da