Back to Search Start Over

Introduction of non-linear elasticity models for characterization of shape and deformation statistics: application to contractility assessment of isolated adult cardiocytes

Authors :
Carlos Bazan
Paul Paolini
Trevor Hawkins
Peter Blomgren
David Torres-Barba
Source :
BMC Biophysics, Vol 4, Iss 1, p 17 (2011), BMC Biophysics
Publication Year :
2011
Publisher :
BMC, 2011.

Abstract

Background We are exploring the viability of a novel approach to cardiocyte contractility assessment based on biomechanical properties of the cardiac cells, energy conservation principles, and information content measures. We define our measure of cell contraction as being the distance between the shapes of the contracting cell, assessed by the minimum total energy of the domain deformation (warping) of one cell shape into another. To guarantee a meaningful vis-à-vis correspondence between the two shapes, we employ both a data fidelity term and a regularization term. The data fidelity term is based on nonlinear features of the shapes while the regularization term enforces the compatibility between the shape deformations and that of a hyper-elastic material. Results We tested the proposed approach by assessing the contractile responses in isolated adult rat cardiocytes and contrasted these measurements against two different methods for contractility assessment in the literature. Our results show good qualitative and quantitative agreements with these methods as far as frequency, pacing, and overall behavior of the contractions are concerned. Conclusions We hypothesize that the proposed methodology, once appropriately developed and customized, can provide a framework for computational cardiac cell biomechanics that can be used to integrate both theory and experiment. For example, besides giving a good assessment of contractile response of the cardiocyte, since the excitation process of the cell is a closed system, this methodology can be employed in an attempt to infer statistically significant model parameters for the constitutive equations of the cardiocytes.

Details

Language :
English
ISSN :
20461682
Volume :
4
Issue :
1
Database :
OpenAIRE
Journal :
BMC Biophysics
Accession number :
edsair.doi.dedup.....7fb611dca96ce59b97fcae910801ba83