Back to Search Start Over

Black-Box Optimization Revisited: Improving Algorithm Selection Wizards Through Massive Benchmarking

Authors :
Laurent Meunier
Paco Wong
Jeremy Rapin
Antoine Moreau
Olivier Teytaud
Carola Doerr
Baptiste Roziere
Herilalaina Rakotoarison
Facebook AI Research [Paris] (FAIR)
Facebook
Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)
CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
TAckling the Underspecified (TAU)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)
CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
The Chinese University of Hong Kong [Hong Kong]
Université Clermont Auvergne (UCA)
SIGMA Clermont (SIGMA Clermont)
Institut Pascal (IP)
Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national polytechnique Clermont Auvergne (INP Clermont Auvergne)
Université Clermont Auvergne (UCA)-Université Clermont Auvergne (UCA)
Recherche Opérationnelle (RO)
LIP6
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX)
École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Source :
IEEE Transactions on Evolutionary Computation, IEEE Transactions on Evolutionary Computation, Institute of Electrical and Electronics Engineers, 2021, ⟨10.1109/TEVC.2021.3108185⟩, IEEE Transactions on Evolutionary Computation, 2022, 26 (3), ⟨10.1109/TEVC.2021.3108185⟩
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

International audience; Existing studies in black-box optimization for machine learning suffer from low generalizability, caused by a typically selective choice of problem instances used for training and testing different optimization algorithms. Among other issues, this practice promotes overfitting and poor-performing user guidelines. To address this shortcoming, we propose in this work a benchmark suite, OptimSuite, which covers a broad range of black-box optimization problems, ranging from academic benchmarks to real-world applications, from discrete over numerical to mixed-integer problems, from small to very large-scale problems, from noisy over dynamic to static problems, etc. We demonstrate the advantages of such a broad collection by deriving from it Automated Black Box Optimizer (ABBO), a general-purpose algorithm selection wizard. Using three different types of algorithm selection techniques, ABBO achieves competitive performance on all benchmark suites. It significantly outperforms previous state of the art on some of them, including YABBOB and LSGO. ABBO relies on many high-quality base components. Its excellent performance is obtained without any task-specific parametrization. The OptimSuite benchmark collection, the ABBO wizard and its base solvers have all been merged into the open-source Nevergrad platform, where they are available for reproducible research.

Details

ISSN :
19410026 and 1089778X
Volume :
26
Database :
OpenAIRE
Journal :
IEEE Transactions on Evolutionary Computation
Accession number :
edsair.doi.dedup.....7fbcfd6a75886d3c3de71ad8638fc88d
Full Text :
https://doi.org/10.1109/tevc.2021.3108185