Back to Search Start Over

Feedback stabilization of parabolic systems with input delay

Authors :
Imene Aicha Djebour
Takéo Takahashi
Julie Valein
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
The two first authors were partially supported by the ANR research project IFSMACS (ANR-15-CE40-0010). The third author was partially supported by the ANR research projects ISDEEC (ANR-16-CE40-0013) and ANR ODISSE (ANR-19-CE48-0004-01).
ANR-15-CE40-0010,IFSMACS,Interaction Fluide-Structure : Modélisation, analyse, contrôle et simulation(2015)
ANR-16-CE40-0013,ISDEEC,Interactions entre Systèmes Dynamiques, Equations d'Evolution et Contrôle(2016)
ANR-19-CE48-0004,ODISSE,Synthèse d'observateur pour des systèmes de dimension infinie(2019)
Source :
Mathematical Control and Related Fields, Mathematical Control and Related Fields, 2022, 12 (2), pp.405-420. ⟨10.3934/mcrf.2021027⟩
Publication Year :
2020

Abstract

This work is devoted to the stabilization of parabolic systems with a finite-dimensional control subjected to a constant delay. Our main result shows that the Fattorini-Hautus criterion yields the existence of such a feedback control, as in the case of stabilization without delay. The proof consists in splitting the system into a finite dimensional unstable part and a stable infinite-dimensional part and to apply the Artstein transformation on the finite-dimensional system to remove the delay in the control. Using our abstract result, we can prove new results for the stabilization of parabolic systems with constant delay: the \begin{document}$ N $\end{document}-dimensional linear reaction-convection-diffusion equation with \begin{document}$ N\geq 1 $\end{document} and the Oseen system. We end the article by showing that this theory can be used to stabilize nonlinear parabolic systems with input delay by proving the local feedback distributed stabilization of the Navier-Stokes system around a stationary state.

Details

Language :
English
ISSN :
21568472 and 21568499
Database :
OpenAIRE
Journal :
Mathematical Control and Related Fields, Mathematical Control and Related Fields, 2022, 12 (2), pp.405-420. ⟨10.3934/mcrf.2021027⟩
Accession number :
edsair.doi.dedup.....7fd7db1f2662c2a2908de0afdea4daf9
Full Text :
https://doi.org/10.3934/mcrf.2021027⟩