Back to Search Start Over

PTF10iya: A short-lived, luminous flare from the nuclear region of a star-forming galaxy

Authors :
Cenko, S. Bradley
Bloom, Joshua S.
Kulkarni, S. R.
Strubbe, Linda E.
Miller, Adam A.
Butler, Nathaniel R.
Quimby, Robert M.
Gal-Yam, Avishay
Ofek, Eran O.
Quataert, Eliot
Bildsten, Lars
Poznanski, Dovi
Perley, Daniel A.
Morgan, Adam N.
Filippenko, Alexei V.
Frail, Dale A.
Arcavi, Iair
Ben-Ami, Sagi
Cucchiara, Antonio
Fassnacht, Christopher D.
Green, Yoav
Hook, Isobel M.
Howell, D. Andrew
Lagattuta, David J.
Law, Nicholas M.
Kasliwal, Mansi M.
Nugent, Peter E.
Silverman, Jeffrey M.
Sullivan, Mark
Tendulkar, Shriharsh P.
Yaron, Ofer
Publisher :
Oxford University Press

Abstract

We present the discovery and characterisation of PTF10iya, a short-lived (dt ~ 10 d, with an optical decay rate of ~ 0.3 mag per d), luminous (M_g ~ -21 mag) transient source found by the Palomar Transient Factory. The ultraviolet/optical spectral energy distribution is reasonably well fit by a blackbody with T ~ 1-2 x 10^4 K and peak bolometric luminosity L_BB ~ 1-5 x 10^44 erg per s (depending on the details of the extinction correction). A comparable amount of energy is radiated in the X-ray band that appears to result from a distinct physical process. The location of PTF10iya is consistent with the nucleus of a star-forming galaxy (z = 0.22405 +/- 0.00006) to within 350 mas (99.7 per cent confidence radius), or a projected distance of less than 1.2 kpc. At first glance, these properties appear reminiscent of the characteristic "big blue bump" seen in the near-ultraviolet spectra of many active galactic nuclei (AGNs). However, emission-line diagnostics of the host galaxy, along with a historical light curve extending back to 2007, show no evidence for AGN-like activity. We therefore consider whether the tidal disruption of a star by an otherwise quiescent supermassive black hole may account for our observations. Though with limited temporal information, PTF10iya appears broadly consistent with the predictions for the early "super-Eddington" phase of a solar-type star disrupted by a ~ 10^7 M_sun black hole. Regardless of the precise physical origin of the accreting material, the large luminosity and short duration suggest that otherwise quiescent galaxies can transition extremely rapidly to radiate near the Eddington limit; many such outbursts may have been missed by previous surveys lacking sufficient cadence.<br />18 pages, 8 figures; revised following referee's comments

Details

Language :
English
ISSN :
00358711
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....7ff9bb2ef8999d6c77329f2809305f93