Back to Search Start Over

On the codimension of the set of optima: large scale optimisation with few relevant variables

Authors :
Olivier Teytaud
Vincent Berthier
Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Machine Learning and Optimisation (TAO)
Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Paris-Sud - Paris 11 (UP11)-Laboratoire de Recherche en Informatique (LRI)
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec
Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
Artificial Evolution 2015, Artificial Evolution 2015, 2015, Lyon, France. To appear, Lecture Notes in Computer Science ISBN: 9783319314709, Artificial Evolution
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

The complexity of continuous optimisation by comparison-based algorithms has been developed in several recent papers. Roughly speaking, these papers conclude that a precision $$\epsilon $$ can be reached with cost $$\varTheta n\log 1/\epsilon $$ in dimension n within polylogarithmic factors for the sphere function. Compared to other non comparison-based algorithms, this rate is not excellent; on the other hand, it is classically considered that comparison-based algorithms have some robustness advantages, as well as scalability on parallel machines and simplicity. In the present paper we show another advantage, namely resilience to useless variables, thanks to a complexity bound $$\varTheta m\log 1/\epsilon $$ where m is the codimension of the set of optima, possibly $$m << n$$. In addition, experiments show that some evolutionary algorithms have a negligible computational complexity even in high dimension, making them practical for huge problems with many useless variables.

Details

Language :
English
ISBN :
978-3-319-31470-9
ISBNs :
9783319314709
Database :
OpenAIRE
Journal :
Artificial Evolution 2015, Artificial Evolution 2015, 2015, Lyon, France. To appear, Lecture Notes in Computer Science ISBN: 9783319314709, Artificial Evolution
Accession number :
edsair.doi.dedup.....803361c62c7a22c915cb8da2f34e3b9d