Back to Search
Start Over
Correlation Between Brain Tissue Damage and Inertial Cavitation Dose Quantified Using Passive Cavitation Imaging
- Source :
- Ultrasound in medicinebiology. 45(10)
- Publication Year :
- 2018
-
Abstract
- Focused ultrasound (FUS)-induced cavitation-mediated brain therapies have become emerging therapeutic modalities for neurologic diseases. Cavitation monitoring is essential to ensure the safety of all cavitation-mediated therapeutic techniques as inertial cavitation can be associated with tissue damage. The objective of this study was to reveal the correlation between the inertial cavitation dose, quantified by passive cavitation imaging (PCI), and brain tissue histologic-level damage induced by FUS in combination with microbubbles. An ultrasound image-guided FUS system consisting of a single-element FUS transducer (1.5 MHz) and a co-axially aligned 128-element linear ultrasound imaging array was used to perform FUS treatment of mice. Mice were sonicated by FUS with different peak negative pressures (0.5 MPa, 1.1 MPa, 4.0 MPa and 6.5 MPa) in the presence of systemically injected microbubbles. The acoustic emissions from the FUS-activated microbubbles were passively detected by the imaging array. The pre-beamformed channel data were acquired and processed offline using the frequency-domain delay, sum and integration algorithm to generate inertial cavitation maps. All the mice were sacrificed after the FUS treatment, and their brains were harvested and processed for hematoxylin and eosin staining. The obtained inertial cavitation maps revealed the dynamic changes of microbubble behaviors during FUS treatment at different pressure levels. It was found that the inertial cavitation dose quantified based on PCI had a linear correlation with the scale of histologic-level tissue damage. Findings from this study suggested that PCI can be used to predict histologic-level tissue damage associated with the FUS-induced cavitation.
- Subjects :
- Materials science
Microbubbles
Acoustics and Ultrasonics
Radiological and Ultrasound Technology
business.industry
Ultrasonic Therapy
Ultrasound
Biophysics
Brain
Brain tissue
Focused ultrasound
Disease Models, Animal
Mice
Cavitation
Brain Injuries
Tissue damage
Imaging array
Animals
Radiology, Nuclear Medicine and imaging
Integration algorithm
Female
business
Ultrasonography, Interventional
Biomedical engineering
Subjects
Details
- ISSN :
- 1879291X
- Volume :
- 45
- Issue :
- 10
- Database :
- OpenAIRE
- Journal :
- Ultrasound in medicinebiology
- Accession number :
- edsair.doi.dedup.....80562b3c1858b8dbe3843f549b9b8161