Back to Search Start Over

ERα-Dependent E2F Transcription Can Mediate Resistance to Estrogen Deprivation in Human Breast Cancer

Authors :
Maria G. Kuba
Carlos L. Arteaga
Sauveur-Michel Maira
Mitchell Dowsett
William R. Miller
Emily M. Fox
Aixiang Jiang
R. Adam Smith
Todd W. Miller
Gordon B. Mills
Helen Anderson
Justin M. Balko
Ana M. Gonzalez-Angulo
Catherine F. Higham
Siprachanh Chanthaphaychith
Anita K. Dunbier
H. Charles Manning
Zara Ghazoui
Yu Shyr
Source :
Cancer Discovery. 1:338-351
Publication Year :
2011
Publisher :
American Association for Cancer Research (AACR), 2011.

Abstract

Most estrogen receptor α (ER)-positive breast cancers initially respond to antiestrogens, but many eventually become estrogen-independent and recur. We identified an estrogen-independent role for ER and the CDK4/Rb/E2F transcriptional axis in the hormone-independent growth of breast cancer cells. ER downregulation with fulvestrant or small interfering RNA (siRNA) inhibited estrogen-independent growth. Chromatin immunoprecipitation identified ER genomic binding activity in estrogen-deprived cells and primary breast tumors treated with aromatase inhibitors. Gene expression profiling revealed an estrogen-independent, ER/E2F-directed transcriptional program. An E2F activation gene signature correlated with a lesser response to aromatase inhibitors in patients' tumors. siRNA screening showed that CDK4, an activator of E2F, is required for estrogen-independent cell growth. Long-term estrogen-deprived cells hyperactivate phosphatidylinositol 3-kinase (PI3K) independently of ER/E2F. Fulvestrant combined with the pan-PI3K inhibitor BKM120 induced regression of ER+ xenografts. These data support further development of ER downregulators and CDK4 inhibitors, and their combination with PI3K inhibitors for treatment of antiestrogen-resistant breast cancers. Significance: ERα retains genomic activity and drives a CDK4/E2F-dependent transcriptional program despite estrogen deprivation therapy. Combined inhibition of ER and PI3K induced regression of ER+ xenografts, supporting further development of strong ER downregulators and CDK4 inhibitors, and their combination with PI3K inhibitors for the treatment of antiestrogen-resistant breast cancers. Cancer Discovery; 1(4); 338–51. ©2011 AACR. Read the Commentary on this article by Van Tine et al., p. 287 This article is highlighted in the In This Issue feature, p. 275

Details

ISSN :
21598290 and 21598274
Volume :
1
Database :
OpenAIRE
Journal :
Cancer Discovery
Accession number :
edsair.doi.dedup.....805c5d26e93d75aacd21392d6a50b470
Full Text :
https://doi.org/10.1158/2159-8290.cd-11-0101