Back to Search Start Over

Desmosomal protein degradation as an underlying cause of arrhythmogenic cardiomyopathy

Authors :
Hoyee Tsui
Sebastiaan Johannes van Kampen
Su Ji Han
Viviana Meraviglia
Willem B. van Ham
Simona Casini
Petra van der Kraak
Aryan Vink
Xiaoke Yin
Manuel Mayr
Alexandre Bossu
Gerard A. Marchal
Jantine Monshouwer-Kloots
Joep Eding
Danielle Versteeg
Hesther de Ruiter
Karel Bezstarosti
Judith Groeneweg
Sjoerd J. Klaasen
Linda W. van Laake
Jeroen A.A. Demmers
Geert J.P.L. Kops
Christine L. Mummery
Toon A.B. van Veen
Carol Ann Remme
Milena Bellin
Eva van Rooij
Biochemistry
Source :
Science Translational Medicine, 15(688):eadd4248. American Association for the Advancement of Science
Publication Year :
2023
Publisher :
American Association for the Advancement of Science, 2023.

Abstract

Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive cardiac disease. Many patients with ACM harbor mutations in desmosomal genes, predominantly in plakophilin-2 ( PKP2 ). Although the genetic basis of ACM is well characterized, the underlying disease-driving mechanisms remain unresolved. Explanted hearts from patients with ACM had less PKP2 compared with healthy hearts, which correlated with reduced expression of desmosomal and adherens junction (AJ) proteins. These proteins were also disorganized in areas of fibrotic remodeling. In vitro data from human-induced pluripotent stem cell–derived cardiomyocytes and microtissues carrying the heterozygous PKP2 c.2013delC pathogenic mutation also displayed impaired contractility. Knockin mice carrying the equivalent heterozygous Pkp2 c.1755delA mutation recapitulated changes in desmosomal and AJ proteins and displayed cardiac dysfunction and fibrosis with age. Global proteomics analysis of 4-month-old heterozygous Pkp2 c.1755delA hearts indicated involvement of the ubiquitin-proteasome system (UPS) in ACM pathogenesis. Inhibition of the UPS in mutant mice increased area composita proteins and improved calcium dynamics in isolated cardiomyocytes. Additional proteomics analyses identified lysine ubiquitination sites on the desmosomal proteins, which were more ubiquitinated in mutant mice. In summary, we show that a plakophilin-2 mutation can lead to decreased desmosomal and AJ protein expression through a UPS-dependent mechanism, which preceded cardiac remodeling. These findings suggest that targeting protein degradation and improving desmosomal protein stability may be a potential therapeutic strategy for the treatment of ACM.

Details

Language :
English
ISSN :
19466242 and 19466234
Volume :
15
Issue :
688
Database :
OpenAIRE
Journal :
Science Translational Medicine
Accession number :
edsair.doi.dedup.....808e5a3b69efcf55e7b85a6c68336d37