Back to Search Start Over

The ganglioside GM1a functions as a coreceptor/attachment factor for dengue virus during infection

Authors :
Sarala Neomi Tantirimudalige
Palur Venkata Raghuvamsi
Kamal Kant Sharma
Jonathan Chua Wei Bao
Ganesh S. Anand
Thorsten Wohland
Source :
Journal of Biological Chemistry. 298:102570
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

Dengue virus (DENV) is a flavivirus causing an estimated 390 million infections per year around the world. Despite the immense global health and economic impact of this virus, its true receptor(s) for internalization into live cells has not yet been identified, and no successful antivirals or treatments have been isolated to this date. This study aims to improve our understanding of virus entry routes by exploring the sialic acid-based cell surface molecule GM1a and its role in DENV infection. We studied the interaction of the virus with GM1a using fluorescence correlation spectroscopy, fluorescence crosscorrelation spectroscopy, imaging fluorescence correlation spectroscopy, amide hydrogen/deuterium exchange mass spectrometry, and isothermal titration calorimetry. Additionally, we explored the effect of this interaction on infectivity and movement of the virus during infection was explored using plaque assay and fluorescence-based imaging and single particle tracking. GM1a was deemed to interact with DENV at domain I (DI) and domain II (DII) of the E protein of the protein coat at quaternary contacts of a fully assembled virus, leading to a 10-fold and 7-fold increase in infectivity for DENV1 and DENV2 in mammalian cell systems, respectively. We determined that the interaction of the virus with GM1a triggers a speeding up of virus movement on live cell surfaces, possibly resulting from a reduction in rigidity of cellular rafts during infection. Collectively, our results suggest that GM1a functions as a coreceptor/attachment factor for DENV during infection in mammalian systems.

Details

ISSN :
00219258
Volume :
298
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....80dc61e1397b173c16408c979f5d699e
Full Text :
https://doi.org/10.1016/j.jbc.2022.102570