Back to Search Start Over

Linear regression models and k-means clustering for statistical analysis of fNIRS data

Authors :
Francesca Ieva
Lorenzo Spinelli
Alessandro Torricelli
Rebecca Re
Lucia Zucchelli
Anna Maria Paganoni
Viola Bonomini
Davide Contini
Source :
Biomedical optics express 6 (2015): 615–630. doi:10.1364/BOE.6.000615, info:cnr-pdr/source/autori:Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro/titolo:Linear regression models and k-means clustering for statistical analysis of fNIRS data/doi:10.1364%2FBOE.6.000615/rivista:Biomedical optics express/anno:2015/pagina_da:615/pagina_a:630/intervallo_pagine:615–630/volume:6
Publication Year :
2015

Abstract

We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets. (C) 2015 Optical Society of America

Details

Language :
English
Database :
OpenAIRE
Journal :
Biomedical optics express 6 (2015): 615–630. doi:10.1364/BOE.6.000615, info:cnr-pdr/source/autori:Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro/titolo:Linear regression models and k-means clustering for statistical analysis of fNIRS data/doi:10.1364%2FBOE.6.000615/rivista:Biomedical optics express/anno:2015/pagina_da:615/pagina_a:630/intervallo_pagine:615–630/volume:6
Accession number :
edsair.doi.dedup.....80ed33e6b047a9b16a3b65542332f629
Full Text :
https://doi.org/10.1364/BOE.6.000615