Back to Search Start Over

The ethylene response factor MdERF1B regulates anthocyanin and proanthocyanidin biosynthesis in apple

Authors :
Guanxian Yang
Wang Nan
Zongying Zhang
Mengyu Su
Xu Haifeng
Wang Yicheng
Lin Xu
Fang Hongcheng
Jiang Shenghui
Xuesen Chen
Jing Zhang
Source :
Plant molecular biology. 98(3)
Publication Year :
2018

Abstract

The regulator MdERF1B in the apple (Malus × domestica) ethylene pathway mainly acts on MdMYB9 and MdMYB11 to regulate anthocyanin and proanthocyanidin accumulation. Dietary anthocyanins and proanthocyanidins (PAs) have health benefits for humans, and are associated with decreased risks of coronary heart disease and cancer. Ethylene can enhance reddening of apple (Malus × domestica), but the regulatory mechanism is poorly understood. In this study, an ethylene response factor (ERF), MdERF1B, was identified and functionally characterized. ‘Orin’ calli overexpressing MdERF1B were generated and then analyzed by quantitative reverse transcription-PCR. Compared with the control calli, the MdERF1B-overexpressing calli showed increased expression levels of MdACO1, MdERF1, and MdERF3 in the ethylene pathway and MdCHS, MdCHI, MdF3H, MdDFR, MdANS, MdLAR, MdANR, MdMYB9 and MdMYB11 in the flavonoid pathway. As a result, the levels of anthocyanins and PAs were significantly increased in the MdERF1B-overexpressing calli. MdERF1B interacted with MdMYB9, MdMYB1, and MdMYB11 proteins in yeast two-hybrid, pull-down, and bimolecular fluorescence complementation assays. Furthermore, in yeast one-hybrid and electrophoretic mobility shift assays, MdERF1B also bound to the promoters of MdMYB9, MdMYB1, and MdMYB11. In a luciferase reporter assay, MdERF1B mainly activated proMdMYB9 and proMdMYB11, promoting their expression levels. This was in agreement with MdERF1B’s overexpression in calli, which barely affected MdMYB1 expression. Taken together, our findings provide an insight into the regulatory mechanisms in the ethylene pathway that increase anthocyanin and PA accumulation in apple.

Details

ISSN :
15735028
Volume :
98
Issue :
3
Database :
OpenAIRE
Journal :
Plant molecular biology
Accession number :
edsair.doi.dedup.....80f38df537bfde5276ca15c9435b7cea