Back to Search
Start Over
An approach to long-range electron transfer mechanisms in metalloproteins: In situ scanning tunneling microscopy with submolecular resolution
- Source :
- Proceedings of the National Academy of Sciences. 96:1379-1384
- Publication Year :
- 1999
- Publisher :
- Proceedings of the National Academy of Sciences, 1999.
-
Abstract
- In situ scanning tunneling microscopy (STM) of redox molecules, in aqueous solution, shows interesting analogies and differences compared with interfacial electrochemical electron transfer (ET) and ET in homogeneous solution. This is because the redox level represents a deep indentation in the tunnel barrier, with possible temporary electronic population. Particular perspectives are that both the bias voltage and the overvoltage relative to a reference electrode can be controlled, reflected in spectroscopic features when the potential variation brings the redox level to cross the Fermi levels of the substrate and tip. The blue copper protein azurin adsorbs on gold(111) via a surface disulfide group. Well resolved in situ STM images show arrays of molecules on the triangular gold(111) terraces. This points to the feasibility of in situ STM of redox metalloproteins directly in their natural aqueous medium. Each structure also shows a central brighter contrast in the constant current mode, indicative of 2- to 4-fold current enhancement compared with the peripheral parts. This supports the notion of tunneling via the redox level of the copper atom and of in situ STM as a new approach to long-range electron tunneling in metalloproteins.
- Subjects :
- Models, Molecular
Protein Conformation
Population
Analytical chemistry
Reference electrode
Redox
law.invention
Electron Transport
symbols.namesake
Electron transfer
Azurin
Microscopy, Scanning Tunneling
law
Metalloproteins
Disulfides
education
Quantum tunnelling
education.field_of_study
Multidisciplinary
Chemistry
Fermi level
Biological Sciences
Models, Chemical
Chemical physics
Pseudomonas aeruginosa
symbols
Thermodynamics
Adsorption
Gold
Scanning tunneling microscope
Oxidation-Reduction
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 96
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....81079c2aacee87eb8d7345ba654b5dff
- Full Text :
- https://doi.org/10.1073/pnas.96.4.1379