Back to Search Start Over

An approach to long-range electron transfer mechanisms in metalloproteins: In situ scanning tunneling microscopy with submolecular resolution

Authors :
Jingdong Zhang
Jens Enevold Thaulov Andersen
Esben Peter Friis
Alexander M. Kuznetsov
Jens Ulstrup
Yu.I. Kharkats
Richard J. Nichols
Source :
Proceedings of the National Academy of Sciences. 96:1379-1384
Publication Year :
1999
Publisher :
Proceedings of the National Academy of Sciences, 1999.

Abstract

In situ scanning tunneling microscopy (STM) of redox molecules, in aqueous solution, shows interesting analogies and differences compared with interfacial electrochemical electron transfer (ET) and ET in homogeneous solution. This is because the redox level represents a deep indentation in the tunnel barrier, with possible temporary electronic population. Particular perspectives are that both the bias voltage and the overvoltage relative to a reference electrode can be controlled, reflected in spectroscopic features when the potential variation brings the redox level to cross the Fermi levels of the substrate and tip. The blue copper protein azurin adsorbs on gold(111) via a surface disulfide group. Well resolved in situ STM images show arrays of molecules on the triangular gold(111) terraces. This points to the feasibility of in situ STM of redox metalloproteins directly in their natural aqueous medium. Each structure also shows a central brighter contrast in the constant current mode, indicative of 2- to 4-fold current enhancement compared with the peripheral parts. This supports the notion of tunneling via the redox level of the copper atom and of in situ STM as a new approach to long-range electron tunneling in metalloproteins.

Details

ISSN :
10916490 and 00278424
Volume :
96
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences
Accession number :
edsair.doi.dedup.....81079c2aacee87eb8d7345ba654b5dff
Full Text :
https://doi.org/10.1073/pnas.96.4.1379