Back to Search
Start Over
Empirical Studies on Software Product Maintainability Prediction: A Systematic Mapping and Review
- Source :
- e-Informatica Software Engineering Journal, Vol 13, Iss 1, Pp 141-202 (2019)
- Publication Year :
- 2019
- Publisher :
- Wroclaw University of Science and Technology, 2019.
-
Abstract
- Background: Software product maintainability prediction (SPMP) is an important task to control software maintenance activity, and many SPMP techniques for improving software maintainability have been proposed. In this study, we performed a systematic mapping and review on SPMP studies to analyze and summarize the empirical evidence on the prediction accuracy of SPMP techniques in current research. Objective: The objective of this study is twofold: (1) to classify SPMP studies reported in the literature using the following criteria: publication year, publication source, research type, empirical approach, software application type, datasets, independent variables used as predictors, dependent variables (e.g. how maintainability is expressed in terms of the variable to be predicted), tools used to gather the predictors, the successful predictors and SPMP techniques, (2) to analyze these studies from three perspectives: prediction accuracy, techniques reported to be superior in comparative studies and accuracy comparison of these techniques. Methodology: We performed a systematic mapping and review of the SPMP empirical studies published from 2000 up to 2018 based on an automated search of nine electronic databases. Results: We identified 82 primary studies and classified them according to the above criteria. The mapping study revealed that most studies were solution proposals using a history-based empirical evaluation approach, the datasets most used were historical using object-oriented software applications, maintainability in terms of the independent variable to be predicted was most frequently expressed in terms of the number of changes made to the source code, maintainability predictors most used were those provided by Chidamber and Kemerer (C&K), Li and Henry (L&H) and source code size measures, while the most used techniques were ML techniques, in particular artificial neural networks. Detailed analysis revealed that fuzzy & neuro fuzzy (FNF), artificial neural network (ANN) showed good prediction for the change topic, while multilayer perceptron (MLP), support vector machine (SVM), and group method of data handling (GMDH) techniques presented greater accuracy prediction in comparative studies. Based on our findings SPMP is still limited. Developing more accurate techniques may facilitate their use in industry and well-formed, generalizable results be obtained. We also provide guidelines for improving the maintainability of software.
- Subjects :
- lcsh:Computer software
lcsh:QA76.75-76.765
systematic mapping study, systematic literature review, software product maintainability, empirical studies
systematic mapping study
0202 electrical engineering, electronic engineering, information engineering
systematic literature review
software product maintainability
empirical studies
020207 software engineering
02 engineering and technology
Subjects
Details
- Language :
- English
- ISSN :
- 20844840 and 18977979
- Volume :
- 13
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- e-Informatica Software Engineering Journal
- Accession number :
- edsair.doi.dedup.....813f89f0fd2b16d80e5c7a656d60c5a9