Back to Search
Start Over
Heat tolerance of reptile embryos: Current knowledge, methodological considerations, and future directions
- Source :
- Journal of Experimental Zoology Part A: Ecological and Integrative Physiology. 335:45-58
- Publication Year :
- 2020
- Publisher :
- Wiley, 2020.
-
Abstract
- Aspects of global change result in warming temperatures that threaten biodiversity across the planet. Eggs of non-avian, oviparous reptiles (henceforth "reptiles") are particularly vulnerable to warming due to a lack of parental care during incubation and limited ability to behaviorally thermoregulate. Because warming temperatures will cause increases in both mean and variance of nest temperatures, it is crucial to consider embryo responses to both chronic and acute heat stress. Although many studies have considered embryo survival across constant incubation temperatures (i.e., chronic stress) and in response to brief exposure to extreme temperatures (i.e., acute stress), there are no standard metrics or terminology for determining heat stress of embryos. This impedes comparisons across studies and species and hinders our ability to predict how species will respond to global change. In this review, we compare various methods that have been used to assess embryonic heat tolerance in reptiles and provide new terminology and metrics for quantifying embryo responses to both chronic and acute heat stress. We apply these recommendations to data from the literature to assess chronic heat tolerance in 16 squamates, 16 turtles, five crocodilians, and the tuatara and acute heat tolerance for nine squamates and one turtle. Our results indicate that there is relatively large variation in chronic and acute heat tolerance across species, and we outline directions for future research, calling for more studies that assess embryo responses to acute thermal stress, integrate embryo responses to chronic and acute temperatures in predictive models, and identify mechanisms that determine heat tolerance.
- Subjects :
- Thermotolerance
Embryo, Nonmammalian
Hot Temperature
Tuatara
biology
Physiology
Climate Change
Biodiversity
Reptiles
Zoology
Thermoregulation
biology.organism_classification
law.invention
law
Genetics
Animals
Animal Science and Zoology
Chronic stress
Critical thermal maximum
Turtle (robot)
Oviparity
Molecular Biology
Paternal care
Ecology, Evolution, Behavior and Systematics
Subjects
Details
- ISSN :
- 24715646 and 24715638
- Volume :
- 335
- Database :
- OpenAIRE
- Journal :
- Journal of Experimental Zoology Part A: Ecological and Integrative Physiology
- Accession number :
- edsair.doi.dedup.....8156692b34e69b588103d5de4423b81e
- Full Text :
- https://doi.org/10.1002/jez.2402