Sorry, I don't understand your search. ×
Back to Search Start Over

Zinc Released from Injured Cells Is Acting via the Zn2+-sensing Receptor, ZnR, to Trigger Signaling Leading to Epithelial Repair

Authors :
Andrey Nevo
Israel Sekler
Anna Zinger
Haleli Sharir
Michal Hershfinkel
Source :
Journal of Biological Chemistry. 285:26097-26106
Publication Year :
2010
Publisher :
Elsevier BV, 2010.

Abstract

A role for Zn(2+) in accelerating wound healing is established, yet, the signaling pathways linking Zn(2+) to tissue repair are not well known. We show that in the human HaCaT keratinocytes extracellular Zn(2+) induces a metabotropic Ca(2+) response that is abolished by silencing the expression of the G-protein-coupled receptor GPR39, suggesting that this Zn(2+)-sensing receptor, ZnR, is mediating the response. Keratinocytic-ZnR signaling is highly selective for Zn(2+) and can be triggered by nanomolar concentrations of this ion. Interestingly, Zn(2+) was also released following cellular injury, as monitored by a specific non-permeable fluorescent Zn(2+) probe, ZnAF-2. Chelation of Zn(2+) and scavenging of ATP from conditioned medium, collected from injured epithelial cultures, was sufficient to eliminate the metabotropic Ca(2+) signaling. The signaling triggered by Zn(2+), via ZnR, or by ATP further activated MAP kinase and induced up-regulation of the sodium/proton exchanger NHE1 activity. Finally, activation of ZnR/GPR39 signaling or application of ATP enhanced keratinocytes scratch closure in an in vitro model. Thus our results indicate that extracellular Zn(2+), which is either applied or released following injury, activates ZnR/GPR39 to promote signaling leading to epithelial repair.

Details

ISSN :
00219258
Volume :
285
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....8167e94ce4b704e289be5ac6988954b7
Full Text :
https://doi.org/10.1074/jbc.m110.107490