Back to Search Start Over

A microservice-based framework for exploring data selection in cross-building knowledge transfer

Authors :
Mouna Labiadh
Christian Obrecht
Parisa Ghodous
Catarina Ferreira da Silva
Service Oriented Computing (SOC)
Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS)
Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École Centrale de Lyon (ECL)
Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Université Lumière - Lyon 2 (UL2)
Centre d'Energétique et de Thermique de Lyon (CETHIL)
Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon
Instituto Universitário de Lisboa (ISCTE-IUL)
Source :
Service Oriented Computing and Applications, Service Oriented Computing and Applications, Springer, 2020, ⟨10.1007/s11761-020-00306-w⟩, Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

Supervised deep learning has achieved remarkable success in various applications. Successful machine learning application however depends on the availability of sufficiently large amount of data. In the absence of data from the target domain, representative data collection from multiple sources is often needed. However, a model trained on existing multi-source data might generalize poorly on the unseen target domain. This problem is referred to as domain shift. In this paper, we explore the suitability of multi-source training data selection to tackle the domain shift challenge in the context of domain generalization. We also propose a microservice-oriented methodology for supporting this solution. We perform our experimental study on the use case of building energy consumption prediction. Experimental results suggest that minimal building description is capable of improving cross-building generalization performances when used to select energy consumption data.<br />Service Oriented Computing and Applications, Springer, 2020

Details

ISSN :
18632394 and 18632386
Volume :
15
Database :
OpenAIRE
Journal :
Service Oriented Computing and Applications
Accession number :
edsair.doi.dedup.....81aa3ff6d7339d6fd7e0d0cc29f53f7c
Full Text :
https://doi.org/10.1007/s11761-020-00306-w