Back to Search Start Over

Light curve classification with recurrent neural networks for GOTO:dealing with imbalanced data

Authors :
Y. L. Mong
Duncan K. Galloway
V. S. Dhillon
James McCormac
U. Burhanudin
R. Eyles-Ferris
P. T. O'Brien
Danny Steeghs
Martin J. Dyer
S. P. Littlefair
Kendall Ackley
K. Noysena
Utane Sawangwit
L. K. Nuttall
Don Pollacco
R. L. C. Starling
T. Heikkilä
Mark Kennedy
Andrew J. Levan
J. D. Lyman
David Mkrtichian
Enric Palle
P. A. Strøm
Seppo Mattila
A. Chrimes
Klaas Wiersema
Elizabeth R. Stanway
James Mullaney
D. Mata-Sanchez
Puji Irawati
B. P. Gompertz
Christopher J. Duffy
Eric Thrane
Supachai Awiphan
Rene P. Breton
Krzysztof Ulaczyk
S. Tooke
T. Killestein
E. J. Daw
Rubina Kotak
Justyn R. Maund
G. Ramsay
Paul Chote
R. Cutter
L. Makrygianni
Source :
Burhanudin, U F, Maund, J R, Killestein, T, Ackley, K, Dyer, M J, Lyman, J, Ulaczyk, K, Cutter, R, Mong, Y-L, Steeghs, D, Galloway, D K, Dhillon, V, O'Brien, P, Ramsay, G, Noysena, K, Kotak, R, Breton, R P, Nuttall, L, Pallé, E, Pollacco, D, Thrane, E, Awiphan, S, Chote, P, Chrimes, A, Daw, E, Duffy, C, Eyles-Ferris, R, Gompertz, B, Heikkilä, T, Irawati, P, Kennedy, M R, Levan, A, Littlefair, S, Makrygianni, L, Mata-Sánchez, D, Mattila, S, McCormac, J, Mkrtichian, D, Mullaney, J, Sawangwit, U, Stanway, E, Starling, R, Strøm, P, Tooke, S & Wiersema, K 2021, ' Light curve classification with recurrent neural networks for GOTO : dealing with imbalanced data ', Monthly Notices of the Royal Astronomical Society, vol. 505, no. 3, pp. 4345-4361 . https://doi.org/10.1093/mnras/stab1545
Publication Year :
2021

Abstract

The advent of wide-field sky surveys has led to the growth of transient and variable source discoveries. The data deluge produced by these surveys has necessitated the use of machine learning (ML) and deep learning (DL) algorithms to sift through the vast incoming data stream. A problem that arises in real-world applications of learning algorithms for classification is imbalanced data, where a class of objects within the data is underrepresented, leading to a bias for over-represented classes in the ML and DL classifiers. We present a recurrent neural network (RNN) classifier that takes in photometric time-series data and additional contextual information (such as distance to nearby galaxies and on-sky position) to produce real-time classification of objects observed by the Gravitational-wave Optical Transient Observer (GOTO), and use an algorithm-level approach for handling imbalance with a focal loss function. The classifier is able to achieve an Area Under the Curve (AUC) score of 0.972 when using all available photometric observations to classify variable stars, supernovae, and active galactic nuclei. The RNN architecture allows us to classify incomplete light curves, and measure how performance improves as more observations are included. We also investigate the role that contextual information plays in producing reliable object classification.<br />Comment: 16 pages, 12 figures, to be published in Monthly Notices of the Royal Astronomical Society

Details

Language :
English
ISSN :
00358711
Database :
OpenAIRE
Journal :
Burhanudin, U F, Maund, J R, Killestein, T, Ackley, K, Dyer, M J, Lyman, J, Ulaczyk, K, Cutter, R, Mong, Y-L, Steeghs, D, Galloway, D K, Dhillon, V, O'Brien, P, Ramsay, G, Noysena, K, Kotak, R, Breton, R P, Nuttall, L, Pallé, E, Pollacco, D, Thrane, E, Awiphan, S, Chote, P, Chrimes, A, Daw, E, Duffy, C, Eyles-Ferris, R, Gompertz, B, Heikkilä, T, Irawati, P, Kennedy, M R, Levan, A, Littlefair, S, Makrygianni, L, Mata-Sánchez, D, Mattila, S, McCormac, J, Mkrtichian, D, Mullaney, J, Sawangwit, U, Stanway, E, Starling, R, Strøm, P, Tooke, S & Wiersema, K 2021, ' Light curve classification with recurrent neural networks for GOTO : dealing with imbalanced data ', Monthly Notices of the Royal Astronomical Society, vol. 505, no. 3, pp. 4345-4361 . https://doi.org/10.1093/mnras/stab1545
Accession number :
edsair.doi.dedup.....81ac2607da546de6bf614fe7f4fccd51