Back to Search
Start Over
Highest Weights for Categorical Representations
- Source :
- International Mathematics Research Notices. 2020:9988-10004
- Publication Year :
- 2018
- Publisher :
- Oxford University Press (OUP), 2018.
-
Abstract
- We present a criterion for establishing Morita equivalence of monoidal categories, and apply it to the categorical representation theory of reductive groups $G$. We show that the "de Rham group algebra" $\mathcal D(G)$ (the monoidal category of $\mathcal D$-modules on $G$) is Morita equivalent to the universal Hecke category $\mathcal D(N \backslash G/N)$ and to its monodromic variant $\widetilde{\mathcal D}(B \backslash G / B)$. In other words, de Rham $G$-categories, i.e., module categories for $\mathcal D(G)$, satisfy a "highest weight theorem" - they all appear in the decomposition of the universal principal series representation $\mathcal D(G/N)$ or in twisted $\mathcal D$-modules on the flag variety $\widetilde{\mathcal D}(G/B)$<br />11 pages
- Subjects :
- General Mathematics
Flag (linear algebra)
010102 general mathematics
Monoidal category
Group algebra
16. Peace & justice
01 natural sciences
Representation theory
Combinatorics
Mathematics - Algebraic Geometry
Mathematics::Category Theory
Mathematics - Quantum Algebra
FOS: Mathematics
Principal series representation
Quantum Algebra (math.QA)
Representation Theory (math.RT)
0101 mathematics
Variety (universal algebra)
Morita equivalence
Algebraic Geometry (math.AG)
Categorical variable
Mathematics - Representation Theory
Mathematics
Subjects
Details
- ISSN :
- 16870247 and 10737928
- Volume :
- 2020
- Database :
- OpenAIRE
- Journal :
- International Mathematics Research Notices
- Accession number :
- edsair.doi.dedup.....8257de46247c6c7f25db5708ec4e8ba0
- Full Text :
- https://doi.org/10.1093/imrn/rny258