Back to Search Start Over

Highest Weights for Categorical Representations

Authors :
Hendrik Orem
David Ben-Zvi
Sam Gunningham
Source :
International Mathematics Research Notices. 2020:9988-10004
Publication Year :
2018
Publisher :
Oxford University Press (OUP), 2018.

Abstract

We present a criterion for establishing Morita equivalence of monoidal categories, and apply it to the categorical representation theory of reductive groups $G$. We show that the "de Rham group algebra" $\mathcal D(G)$ (the monoidal category of $\mathcal D$-modules on $G$) is Morita equivalent to the universal Hecke category $\mathcal D(N \backslash G/N)$ and to its monodromic variant $\widetilde{\mathcal D}(B \backslash G / B)$. In other words, de Rham $G$-categories, i.e., module categories for $\mathcal D(G)$, satisfy a "highest weight theorem" - they all appear in the decomposition of the universal principal series representation $\mathcal D(G/N)$ or in twisted $\mathcal D$-modules on the flag variety $\widetilde{\mathcal D}(G/B)$<br />11 pages

Details

ISSN :
16870247 and 10737928
Volume :
2020
Database :
OpenAIRE
Journal :
International Mathematics Research Notices
Accession number :
edsair.doi.dedup.....8257de46247c6c7f25db5708ec4e8ba0
Full Text :
https://doi.org/10.1093/imrn/rny258