Back to Search Start Over

Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments

Authors :
Xenia Specka
Mikhail A. Semenov
Carlos Gregorio Hernández Díaz-Ambrona
Frank Ewert
Roberto Ferrise
Margarita Ruiz-Ramos
Fulu Tao
Pierre Martre
Alan H. Schulman
Holger Hoffmann
Marco Bindi
Jukka Höhn
Thomas Gaiser
Anaëlle Dambreville
Claas Nendel
Taru Palosuo
Davide Cammarano
Lucía Rodríguez
M. Ines Minguez
Kurt Christian Kersebaum
Reimund P. Rötter
Tapio Salo
Natural Resources Institute Finland (LUKE)
Georg-August-University [Göttingen]
Centre for Biodiversity and Sustainable Land Use (CBL)
University of Madrid
Biotechnology and Biological Sciences Research Council
Institute of Landscape Systems Analysis, Leibniz Centre for Agricultural Landscape Research
Leibniz Association
Crop Science Group, INRES
Rheinische Friedrich-Wilhelms-Universität Bonn
Écophysiologie des Plantes sous Stress environnementaux (LEPSE)
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)
Department of Agri-Food Production and Environmental Sciences
University delgi Studi di Firenze
The James Hutton Institute
University of Helsinki
FACCE-JPI, the FACCE-MACSUR, Grant/Award Number: 031A103B
Finland Ministry of Agriculture and Forestry, FACCE-MACSUR
Academy of Finland, the NORFASYS, Grant/Award Number: 268277, 292944
PLUMES, Grant/Award Number: 277403, 292836
German Federal Ministry of Education and Research, Grant/Award Number: 01LL1304A, 031A351A
Spanish Ministry of Economy, Industry and Competitiveness, the MULCLIVAR, Grant/Award Number: CGL2012-38923- C02-02
German Federal Ministry of Food and Agriculture (BMEL) through the Federal Office for Agriculture and Food (BLE), Grant/Award Number: 2851ERA01J
German Ministry of Education and Research BMBF), Grant/Award Number: 031B0039C
French National Institute for Agricultural Research, Grant/Award Number: 031A103B
Italian Ministry for Agricultural, Food, and Forestry Policies
Biotechnology and Biological Sciences Research Council (BBSRC), Grant/Award Number: BB/P016855/1
European Project: 613556,EC:FP7:KBBE,FP7-KBBE-2013-7-single-stage,WHEALBI(2014)
Georg-August-University = Georg-August-Universität Göttingen
Biotechnology and Biological Sciences Research Council (BBSRC)
Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Università degli Studi di Firenze = University of Florence (UniFI)
Helsingin yliopisto = Helsingfors universitet = University of Helsinki
Source :
Global Change Biology, ISSN 1354-1013, 2018-03, Vol. 24, No. 3, Global Change Biology, Global Change Biology, Wiley, 2018, 24 (3), pp.1291-1307. ⟨10.1111/gcb.14019⟩, Global Change Biology, 2018, 24 (3), pp.1291-1307. ⟨10.1111/gcb.14019⟩, Archivo Digital UPM, Universidad Politécnica de Madrid
Publication Year :
2018
Publisher :
E.T.S. de Ingeniería Agronómica, Alimentaria y de Biosistemas (UPM), 2018.

Abstract

International audience; Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was −4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981–2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources.

Details

Language :
English
ISSN :
13541013 and 13652486
Database :
OpenAIRE
Journal :
Global Change Biology, ISSN 1354-1013, 2018-03, Vol. 24, No. 3, Global Change Biology, Global Change Biology, Wiley, 2018, 24 (3), pp.1291-1307. ⟨10.1111/gcb.14019⟩, Global Change Biology, 2018, 24 (3), pp.1291-1307. ⟨10.1111/gcb.14019⟩, Archivo Digital UPM, Universidad Politécnica de Madrid
Accession number :
edsair.doi.dedup.....8262437d7e3ff25bfa98d1fa32ef59c6
Full Text :
https://doi.org/10.1111/gcb.14019⟩