Back to Search
Start Over
Dust evolution across the Horsehead nebula
- Source :
- Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, EDP Sciences, 2020, 639, pp.A144. ⟨10.1051/0004-6361/202037937⟩
- Publication Year :
- 2020
- Publisher :
- EDP Sciences, 2020.
-
Abstract
- Context. Micro-physical processes on interstellar dust surfaces are tightly connected to dust properties (i.e. dust composition, size, and shape) and play a key role in numerous phenomena in the interstellar medium (ISM). The large disparity in physical conditions (i.e. density and gas temperature) in the ISM triggers an evolution of dust properties. The analysis of how dust evolves with the physical conditions is a stepping stone towards a more thorough understanding of interstellar dust. Aims. We highlight dust evolution in the Horsehead nebula photon-dominated region. Methods. We used Spitzer/IRAC (3.6, 4.5, 5.8 and 8 μm) and Spitzer/MIPS (24 μm) together with Herschel/PACS (70 and 160 μm) and Herschel/SPIRE (250, 350 and 500 μm) to map the spatial distribution of dust in the Horsehead nebula over the entire emission spectral range. We modelled dust emission and scattering using the THEMIS interstellar dust model together with the 3D radiative transfer code SOC. Results. We find that the nano-grain dust-to-gas ratio in the irradiated outer part of the Horsehead is 6–10 times lower than in the diffuse ISM. The minimum size of these grains is 2–2.25 times larger than in the diffuse ISM, and the power-law exponent of their size distribution is 1.1–1.4 times lower than in the diffuse ISM. In the denser part of the Horsehead nebula, it is necessary to use evolved grains (i.e. aggregates, with or without an ice mantle). Conclusions. It is not possible to explain the observations using grains from the diffuse medium. We therefore propose the following scenario to explain our results. In the outer part of the Horsehead nebula, all the nano-grain have not yet had time to re-form completely through photo-fragmentation of aggregates and the smallest of the nano-grain that are sensitive to the radiation field are photo-destroyed. In the inner part of the Horsehead nebula, grains most likely consist of multi-compositional mantled aggregates.
- Subjects :
- 010504 meteorology & atmospheric sciences
Extinction (astronomy)
FOS: Physical sciences
Context (language use)
Astrophysics::Cosmology and Extragalactic Astrophysics
Astrophysics
PHOTODISSOCIATION REGIONS
01 natural sciences
STAR-FORMATION
photon-dominated region
evolution
0103 physical sciences
SIZE DISTRIBUTION
Radiative transfer
Astrophysics::Solar and Stellar Astrophysics
COLD DUST
010303 astronomy & astrophysics
Astrophysics::Galaxy Astrophysics
0105 earth and related environmental sciences
Cosmic dust
Physics
Nebula
extinction
Star formation
Scattering
Astronomy and Astrophysics
115 Astronomy, Space science
Astrophysics - Astrophysics of Galaxies
Interstellar medium
SPITZER
13. Climate action
Space and Planetary Science
Astrophysics of Galaxies (astro-ph.GA)
MULTIBAND IMAGING PHOTOMETER
ISM: individual objects: Horsehead nebula
Astrophysics::Earth and Planetary Astrophysics
dust
EMISSION
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
ABSOLUTE CALIBRATION
INTERSTELLAR DUST
Subjects
Details
- ISSN :
- 14320746 and 00046361
- Volume :
- 639
- Database :
- OpenAIRE
- Journal :
- Astronomy & Astrophysics
- Accession number :
- edsair.doi.dedup.....8298b873589326dac9acc9d7e6aed239
- Full Text :
- https://doi.org/10.1051/0004-6361/202037937