Back to Search Start Over

Preventing Premature Convergence and Proving the Optimality in Evolutionary Algorithms

Authors :
Jean-Baptiste Gotteland
Jean-Marc Alliot
Charlie Vanaret
Nicolas Durand
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Ecole Nationale de l'Aviation Civile - ENAC (FRANCE)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université Toulouse 1 Capitole - UT1 (FRANCE)
Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France)
ENAC - Laboratoire de Mathématiques Appliquées, Informatique et Automatique pour l'Aérien (MAIAA)
Ecole Nationale de l'Aviation Civile (ENAC)
Algorithmes Parallèles et Optimisation (IRIT-APO)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Source :
Artificial Evolution 2013 (Evolution Artificielle 2013)-Proceedings, EA 2013, 11th International Conference on Artificial Evolution, EA 2013, 11th International Conference on Artificial Evolution, Oct 2013, Bordeaux, France. pp 84-94 ; ISBN : 9782953926736, Lecture Notes in Computer Science ISBN: 9783319116822, Artificial Evolution
Publication Year :
2013
Publisher :
INRIA, 2013.

Abstract

http://ea2013.inria.fr//proceedings.pdf; International audience; Evolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality.

Details

Language :
English
ISBN :
978-2-9539267-3-6
978-3-319-11682-2
ISBNs :
9782953926736 and 9783319116822
Database :
OpenAIRE
Journal :
Artificial Evolution 2013 (Evolution Artificielle 2013)-Proceedings, EA 2013, 11th International Conference on Artificial Evolution, EA 2013, 11th International Conference on Artificial Evolution, Oct 2013, Bordeaux, France. pp 84-94 ; ISBN : 9782953926736, Lecture Notes in Computer Science ISBN: 9783319116822, Artificial Evolution
Accession number :
edsair.doi.dedup.....82abf30405cacbaaa71f7a03a8c9cce0