Back to Search Start Over

Statistical Modeling of Disturbed Antennas Based on the Polynomial Chaos Expansion

Authors :
Jinxin Du
Christophe Roblin
Laboratoire Traitement et Communication de l'Information (LTCI)
Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)
Département Communications & Electronique (COMELEC)
Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure des Télécommunications (ENST)
Source :
IEEE Antennas and Wireless Propagation Letters, IEEE Antennas and Wireless Propagation Letters, Institute of Electrical and Electronics Engineers, 2016, PP (99), ⟨10.1109/LAWP.2016.2609739⟩
Publication Year :
2017
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2017.

Abstract

International audience; A new methodology of statistical modeling of the far field (FF) radiated by antennas undergoing random disturbances is presented. Firstly, the radiated FF is transformed into a parsimonious form using the Spherical Modes Expansion Method (SMEM); then a surrogate model relating the parsimonious field with the input random parameters is constructed using the Polynomial Chaos Expansion Method (PCEM). The combination of the SMEM and the PCEM allows to develop a compact and precise model with a minimized experimental design cost. The obtained model is computationally costless for generating statistical samples of disturbed antennas easily usable as surrogate models in various types of analyses. In order to demonstrate its performance , the proposed methodology is validated with a deformable canonical antenna – a dipole undergoing three independent random deformations (stretching, bending and torsion), deriving a compact and precise surrogate model.

Details

ISSN :
15485757 and 15361225
Volume :
16
Database :
OpenAIRE
Journal :
IEEE Antennas and Wireless Propagation Letters
Accession number :
edsair.doi.dedup.....8342b43d84a9fd8af23bfea966f0c70d
Full Text :
https://doi.org/10.1109/lawp.2016.2609739