Back to Search
Start Over
Impact of tissue kinetic heterogeneity on PET quantification: Case study with the L-[1-11C]leucine PET method for cerebral protein synthesis rates
- Source :
- Scientific Reports, Vol 8, Iss 1, Pp 1-15 (2018), Veronese, M, Bertoldo, A, Tomasi, G, Smith, C B & Schmidt, K C 2018, ' Impact of tissue kinetic heterogeneity on PET quantification : case study with the L-[1-11C]leucine PET method for cerebral protein synthesis rates ', Scientific Reports, vol. 8, no. 1 . https://doi.org/10.1038/s41598-017-18890-x, Scientific Reports
- Publication Year :
- 2018
- Publisher :
- Nature Publishing Group, 2018.
-
Abstract
- Functional quantification with PET is generally based on modeling that assumes tissue regions are kinetically homogeneous. Even in regions sufficiently small to approach homogeneity, spillover due to resolution limitations of PET scanners may introduce heterogeneous kinetics into measured data. Herein we consider effects of kinetic heterogeneity at the smallest volume accessible, the single image voxel. We used L-[1-11C]leucine PET and compared rates of cerebral protein synthesis (rCPS) estimated voxelwise with methods that do (Spectral Analysis Iterative Filter, SAIF) and do not (Basis Function Method, BFM) allow for kinetic heterogeneity. In high resolution PET data with good counting statistics BFM produced estimates of rCPS comparable to SAIF, but at lower computational cost; thus the simpler, less costly method can be applied. With poorer counting statistics (lower injected radiotracer doses), BFM estimates were more biased. In data smoothed to simulate lower resolution PET, BFM produced estimates of rCPS 9–14% higher than SAIF, overestimation consistent with applying a homogeneous tissue model to kinetically heterogeneous data. Hence with lower resolution data it is necessary to account for kinetic heterogeneity in the analysis. Kinetic heterogeneity may impact analyses of other tracers and scanning protocols differently; assessments should be made on a case by case basis.
- Subjects :
- lcsh:Medicine
Basis function
computer.software_genre
Kinetic energy
Models, Biological
Article
030218 nuclear medicine & medical imaging
03 medical and health sciences
0302 clinical medicine
Leucine
Voxel
Humans
Spectral analysis
Carbon Radioisotopes
lcsh:Science
Multidisciplinary
Chemistry
Tissue Model
Homogeneity (statistics)
lcsh:R
Brain
Kinetics
Homogeneous
Positron-Emission Tomography
Protein Biosynthesis
lcsh:Q
Tomography, X-Ray Computed
Biological system
Pet quantification
computer
030217 neurology & neurosurgery
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Scientific Reports, Vol 8, Iss 1, Pp 1-15 (2018), Veronese, M, Bertoldo, A, Tomasi, G, Smith, C B & Schmidt, K C 2018, ' Impact of tissue kinetic heterogeneity on PET quantification : case study with the L-[1-11C]leucine PET method for cerebral protein synthesis rates ', Scientific Reports, vol. 8, no. 1 . https://doi.org/10.1038/s41598-017-18890-x, Scientific Reports
- Accession number :
- edsair.doi.dedup.....83ab7dec6a10209a1bf73e0d48e981b4