Cite
The Convection-Diffusion-Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and Stability of Galerkin’s Method
MLA
Kristoffer G. van der Zee, et al. “The Convection-Diffusion-Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and Stability of Galerkin’s Method.” Computational Methods in Applied Mathematics, vol. 19, June 2019, pp. 503–22. EBSCOhost, https://doi.org/10.1515/cmam-2018-0198.
APA
Kristoffer G. van der Zee, Paul Houston, Ignacio Muga, & Sarah Roggendorf. (2019). The Convection-Diffusion-Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and Stability of Galerkin’s Method. Computational Methods in Applied Mathematics, 19, 503–522. https://doi.org/10.1515/cmam-2018-0198
Chicago
Kristoffer G. van der Zee, Paul Houston, Ignacio Muga, and Sarah Roggendorf. 2019. “The Convection-Diffusion-Reaction Equation in Non-Hilbert Sobolev Spaces: A Direct Proof of the Inf-Sup Condition and Stability of Galerkin’s Method.” Computational Methods in Applied Mathematics 19 (June): 503–22. doi:10.1515/cmam-2018-0198.