Back to Search
Start Over
Controlled transition bridge converter: Operating principle, control and application in HVDC transmission systems
- Source :
- Electric Power Systems Research. 163:98-109
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- This paper employs an amplitude modulation with sinusoidal plus third harmonic injection instead of trapezoidal modulation to operate a controlled transition bridge (CTB) converter as ac/dc and dc/ac converter terminals. With such an operation, the CTB converter may require small ac filters; thus attractive for high-voltage direct current (HVDC) transmission systems. To facilitate ac voltage control over a wide range and black-start capability, the injected 3rd harmonic allows the cell capacitor voltages of the CTB converter to be regulated independent of the modulation index and power factor. The insertion of 3rd harmonic into modulating signals achieves two objectives: extends the regions around voltage zeros so that the total voltage unbalanced can be distributed between the cell capacitors, thereby exploiting the bipolar capability of the full-bridge cells in each limb; and to ensure that each limb can be clamped to the positive and negative dc rails every half fundamental period independent of the modulation index to allow recharge of the cell capacitors from the active dc link. The suitability of the CTB converter for HVDC type applications is demonstrated using a two-terminal HVDC link that employs a 21-cell CTB converter, considering normal operation and ac faults.
- Subjects :
- Physics
business.industry
TK
020209 energy
020208 electrical & electronic engineering
Direct current
Modulation index
Electrical engineering
Energy Engineering and Power Technology
02 engineering and technology
Power factor
AC/AC converter
law.invention
Amplitude modulation
Capacitor
law
0202 electrical engineering, electronic engineering, information engineering
Harmonic
Electrical and Electronic Engineering
business
Voltage
Subjects
Details
- ISSN :
- 03787796
- Volume :
- 163
- Database :
- OpenAIRE
- Journal :
- Electric Power Systems Research
- Accession number :
- edsair.doi.dedup.....83c968610f7644f6231169cdfeae69bc
- Full Text :
- https://doi.org/10.1016/j.epsr.2018.06.001