Back to Search
Start Over
Uncovering erosion effects on magnetic flux rope twist
- Source :
- A&A
- Publication Year :
- 2021
-
Abstract
- Magnetic clouds (MCs) are transient structures containing large-scale magnetic flux ropes from solar eruptions. The twist of magnetic field lines around the rope axis reveals information about flux rope formation processes and geoeffectivity. During propagation, MC flux ropes may erode via reconnection with the ambient solar wind. Any erosion reduces the magnetic flux and helicity of the ropes, and changes their cross-sectional twist profiles. This study relates twist profiles in MC flux ropes observed at 1 AU to the amount of erosion undergone by the MCs in interplanetary space. The twist profiles of two well-identified MC flux ropes associated with the clear appearance of post eruption arcades in the solar corona are analysed. To infer the amount of erosion, the magnetic flux content of the ropes in the solar atmosphere is estimated, and compared to estimates at 1 AU. The first MC shows a monotonically decreasing twist from the axis to periphery, while the second displays high twist at the axis, rising twist near the edges, and lower twist in between. The first MC displays a larger reduction in magnetic flux between the Sun and 1 AU, suggesting more erosion, than that seen in the second MC. In the second cloud, rising twist at the rope edges may have been due to an envelope of overlying coronal field lines with relatively high twist, formed by reconnection beneath the erupting flux rope in the low corona. This high-twist envelope remained almost intact from the Sun to 1 AU due to the low erosion levels. In contrast, the high-twist envelope of the first cloud may have been entirely peeled away via erosion by the time it reaches 1 AU.<br />10 pages, 5 figures, 1 table
- Subjects :
- 010504 meteorology & atmospheric sciences
Field line
Sun: coronal mass ejections (CMEs)
HELICITY
Flux
FOS: Physical sciences
Context (language use)
CLOUD EROSION
Astrophysics
PROFILE
01 natural sciences
CORONAL MASS EJECTION
0103 physical sciences
RECONNECTION
Coronal mass ejection
Astrophysics::Solar and Stellar Astrophysics
TOPOLOGY
LOOP
Sun: heliosphere
010303 astronomy & astrophysics
Sun: magnetic fields
Solar and Stellar Astrophysics (astro-ph.SR)
0105 earth and related environmental sciences
Physics
Astronomy and Astrophysics
Magnetic reconnection
solar-terrestrial relations
115 Astronomy, Space science
Corona
Magnetic flux
MODEL
Solar wind
Astrophysics - Solar and Stellar Astrophysics
Space and Planetary Science
magnetic reconnection
Physics::Space Physics
Astrophysics::Earth and Planetary Astrophysics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- A&A
- Accession number :
- edsair.doi.dedup.....8406be78a212d3be27257b5d9927f9ed