Back to Search Start Over

Microbiome signature and diversity regulates the level of energy production under anaerobic condition

Authors :
Mohammad Anwar Siddique
M. Anwar Hossain
Niloy Das
Munawar Sultana
Joynob Akter Puspo
M. Shaminur Rahman
M. Rafiul Islam
M. Nazmul Hoque
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-23 (2021), Scientific Reports
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

The microbiome of the anaerobic digester (AD) regulates the level of energy production. To assess the microbiome diversity and composition in different stages of anaerobic digestion, we collected 16 samples from the AD of cow dung (CD) origin. The samples were categorized into four groups (Group-I, Group-II, Group-III and Group-IV) based on the level of energy production (CH4%), and sequenced through whole metagenome sequencing (WMS). Group-I (n = 2) belonged to initial time of energy production whereas Group-II (n = 5), Group-III (n = 5), and Group-IV (n = 4) had 21–34%, 47–58% and 71–74% of CH4, respectively. The physicochemical analysis revealed that level of energy production (CH4%) had significant positive correlation with digester pH (r = 0.92, p 2 level (%) (r = 0.54, p Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Spirochaetes and Fibrobacteres phyla (> 93.0% of the total abundances). Simultaneously, 343 archaeal strains were detected, of which 95.90% strains shared across four metagenomes. We identified 43 dominant species including 31 bacterial and 12 archaeal species in AD microbiomes, of which only archaea showed positive correlation with digester pH, CH4 concentration, pressure and temperature (Spearman correlation; r > 0.6, p Methanosarcina vacuolate, Dehalococcoides mccartyi, Methanosarcina sp. Kolksee and Methanosarcina barkeri were highly specific for energy production. The correlation network analysis showed that different strains of Euryarcheota and Firmicutes phyla exhibited significant correlation (p = 0.021, Kruskal–Wallis test; with a cutoff of 1.0) with the highest level (74.1%) of energy production (Group-IV). In addition, top CH4 producing microbiomes showed increased genomic functional activities related to one carbon and biotin metabolism, oxidative stress, proteolytic pathways, membrane-type-1-matrix-metalloproteinase (MT1-MMP) pericellular network, acetyl-CoA production, motility and chemotaxis. Importantly, the physicochemical properties of the AD including pH, CH4 concentration (%), pressure, temperature and environmental temperature were found to be positively correlated with these genomic functional potentials and distribution of ARGs and metal resistance pathways (Spearman correlation; r > 0.5, p

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....847a79c1a73221513c9aaf746dfeb7a2