Back to Search
Start Over
Platelet-Rich Plasma and Skeletal Muscle Healing: A Molecular Analysis of the Early Phases of the Regeneration Process in an Experimental Animal Model
- Source :
- PLoS ONE, Vol 9, Iss 7, p e102993 (2014), PLoS ONE
- Publication Year :
- 2014
- Publisher :
- Public Library of Science (PLoS), 2014.
-
Abstract
- Platelet-rich plasma (PRP) has received increasing interest in applied medicine, being widely used in clinical practice with the aim of stimulating tissue healing. Despite the reported clinical success, there is still a lack of knowledge when considering the biological mechanisms at the base of the activity of PRP during the process of muscle healing. The aim of the present study was to verify whether the local delivery of PRP modulates specific molecular events involved in the early stages of the muscle regeneration process. The right flexor sublimis muscle of anesthetized Wistar rats was mechanically injured and either treated with PRP or received no treatment. At day 2 and 5 after surgery, the animals were sacrificed and the muscle samples evaluated at molecular levels. PRP treatment increased significantly the mRNA level of the pro-inflammatory cytokines IL-1β, and TGF-β1. This phenomenon induced an increased expression at mRNA and/or protein levels of several myogenic regulatory factors such as MyoD1, Myf5 and Pax7, as well as the muscular isoform of insulin-like growth factor1 (IGF-1Eb). No effect was detected with respect to VEGF-A expression. In addition, PRP application modulated the expression of miR-133a together with its known target serum response factor (SRF); increased the phosphorylation of αB-cristallin, with a significant improvement in several apoptotic parameters (NF-κB-p65 and caspase 3), indexes of augmented cell survival. The results of the present study indicates that the effect of PRP in skeletal muscle injury repair is due both to the modulation of the molecular mediators of the inflammatory and myogenic pathways, and to the control of secondary pathways such as those regulated by myomiRNAs and heat shock proteins, which contribute to proper and effective tissue regeneration.
- Subjects :
- Male
medicine.medical_specialty
Pathology
Muscle Physiology
Physiology
Science
Interleukin-1beta
Research and Analysis Methods
Transforming Growth Factor beta1
Internal medicine
Heat shock protein
Molecular Cell Biology
Serum response factor
medicine
Animals
Regeneration
Rats, Wistar
Molecular Biology Techniques
Muscle, Skeletal
Molecular Biology
Wound Healing
Multidisciplinary
Platelet-Rich Plasma
business.industry
Regeneration (biology)
Biology and Life Sciences
Skeletal muscle
Muscle Biochemistry
Cell Biology
Rats
medicine.anatomical_structure
Endocrinology
Molecular Machines
Platelet-rich plasma
Models, Animal
Myogenic regulatory factors
Animal Studies
Medicine
MYF5
Wound healing
business
Research Article
Subjects
Details
- ISSN :
- 19326203
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- PLoS ONE
- Accession number :
- edsair.doi.dedup.....84c0577f6f9ce5ee635f52589b1e507c
- Full Text :
- https://doi.org/10.1371/journal.pone.0102993