Back to Search Start Over

The adiabatic limit of Schr\'odinger operators on fibre bundles

Authors :
Jonas Lampart
Stefan Teufel
Publication Year :
2014

Abstract

We consider Schrodinger operators $$H=-\Delta _{g_\varepsilon } + V$$ on a fibre bundle $$M\mathop {\rightarrow }\limits ^{\pi }B$$ with compact fibres and a metric $$g_\varepsilon $$ that blows up directions perpendicular to the fibres by a factor $${\varepsilon ^{-1}\gg 1}$$ . We show that for an eigenvalue $$\lambda $$ of the fibre-wise part of H, satisfying a local gap condition, and every $$N\in \mathbb {N}$$ there exists a subspace of $$L^2(M)$$ that is invariant under H up to errors of order $$\varepsilon ^{N+1}$$ . The dynamical and spectral features of H on this subspace can be described by an effective operator on the fibre-wise $$\lambda $$ -eigenspace bundle $$\mathcal {E}\rightarrow B$$ , giving detailed asymptotics for H.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....84f9a12ae1ad4faf8ba42986a1331a64