Back to Search Start Over

Parameter and State Estimation of Nonlinear Systems Using a Multi-Observer Under the Supervisory Framework

Authors :
Dragan Nesic
Romain Postoyan
Michelle S. Chong
Levin Kuhlmann
Center for Control, Dynamical-Systems, and Computation [Santa Barbara] (CCDC)
University of California [Santa Barbara] (UCSB)
University of California-University of California
Department of Electrical and Electronic Engineering [Melbourne]
Melbourne School of Engineering [Melbourne]
University of Melbourne-University of Melbourne
Centre de Recherche en Automatique de Nancy (CRAN)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
ANR-12-JS03-0004,SEPICOT,Etude du réseau épileptique à l'aide de l'automatique(2012)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)
Source :
IEEE Transactions on Automatic Control, IEEE Transactions on Automatic Control, Institute of Electrical and Electronics Engineers, 2015, 60 (9), pp.2336-2349. ⟨10.1109/TAC.2015.2406978⟩
Publication Year :
2015
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2015.

Abstract

We present a hybrid scheme for the parameter and state estimation of nonlinear continuous-time systems, which is inspired by the supervisory setup used for control. State observers are synthesized for some nominal parameter values and a criterion is designed to select one of these observers at any given time instant, which provides state and parameter estimates. Assuming that a persistency of excitation condition holds, the convergence of the parameter and state estimation errors to zero is ensured up to a margin, which can be made as small as desired by increasing the number of observers. To reduce the potential computational complexity of the scheme, we explain how the sampling of the parameter set can be dynamically updated using a zoom-in procedure. This strategy typically requires a fewer number of observers for a given estimation error margin compared to the static sampling policy. The results are shown to be applicable to linear systems and to a class of nonlinear systems. We illustrate the applicability of the approach by estimating the synaptic gains and the mean membrane potentials of a neural mass model.<br />Submitted to IEEE Transactions of Automatic Control

Details

ISSN :
15582523 and 00189286
Volume :
60
Database :
OpenAIRE
Journal :
IEEE Transactions on Automatic Control
Accession number :
edsair.doi.dedup.....852b3afc7fecfd706e68e5144982ea3e
Full Text :
https://doi.org/10.1109/tac.2015.2406978