Back to Search
Start Over
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics
- Source :
- Scientific Reports, Vol 8, Iss 1, Pp 1-17 (2018), CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET, Scientific Reports, 8(1):3557. Nature Publishing Group, Scientific Reports
- Publication Year :
- 2018
-
Abstract
- We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes. Fil: Hasson, Uri. University of Chicago; Estados Unidos. University of Trento; Italia Fil: Iacovacci, Jacopo. The Francis Crick Institute; Reino Unido. Imperial College London; Reino Unido Fil: Davis, Ben. University of Trento; Italia Fil: Flanagan, Ryan. Queen Mary University of London; Reino Unido Fil: Tagliazucchi, Enzo Rodolfo. Netherlands Institute for Neuroscience; Países Bajos Fil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. University Hospital Kiel; Alemania Fil: Lacasa, Lucas. Queen Mary University of London; Reino Unido
- Subjects :
- Computer science
Science
NEUROIMAGING
Ciencias Físicas
Chaotic
FOS: Physical sciences
Otras Ciencias Físicas
01 natural sciences
Quantitative Biology - Quantitative Methods
Article
010305 fluids & plasmas
purl.org/becyt/ford/1 [https]
Ciencias Biológicas
0103 physical sciences
Journal Article
Statistical physics
ddc:610
010306 general physics
purl.org/becyt/ford/1.6 [https]
Quantitative Methods (q-bio.QM)
Multidisciplinary
Series (mathematics)
Stochastic process
purl.org/becyt/ford/1.3 [https]
Complex network
Biofísica
STOCHASTIC PROCESSES
Maxima and minima
Complex dynamics
Range (mathematics)
FOS: Biological sciences
Physics - Data Analysis, Statistics and Probability
Quantitative Biology - Neurons and Cognition
Medicine
Neurons and Cognition (q-bio.NC)
Data Analysis, Statistics and Probability (physics.data-an)
CIENCIAS NATURALES Y EXACTAS
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Database :
- OpenAIRE
- Journal :
- Scientific Reports, Vol 8, Iss 1, Pp 1-17 (2018), CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET, Scientific Reports, 8(1):3557. Nature Publishing Group, Scientific Reports
- Accession number :
- edsair.doi.dedup.....85634bc639ac0c15a4c95df6e7f09f32