Back to Search Start Over

Novel non-plasmonic nanolasers empowered by topology and interference effects

Authors :
Kwang-Yong Jeong
Yuri S. Kivshar
Min Soo Hwang
Hong Gyu Park
Ha-Reem Kim
Source :
Nanophotonics, Vol 10, Iss 14, Pp 3599-3611 (2021)
Publication Year :
2021
Publisher :
De Gruyter, 2021.

Abstract

Historically, nanophotonics deals with a control of light at the nanoscale being closely connected with the rapid advances in plasmonics – the physics of surface plasmon polaritons supported by metal–dielectric interfaces. Properly engineered nanostructures allow the subwavelength propagation of light and its strong confinement in nanowaveguides and nanocavities, making possible the field enhancement and lasing. Spaser was suggested as a special type of nanolaser with a very small footprint that can be modulated quickly thus becoming a good candidate for on-chip optical data processing. However, recent developments in the physics of high-index dielectric nanoparticles and resonant dielectric metasurfaces allowed to advance the field of nanophotonics and introduce novel nonplasmonic nanostructures and nanolasers empowered by topology and interference effects. Here we present first some examples of experimentally realized spasers, and then discuss the recent developments in the cutting-edge high-index dielectric nanostructures employed for nonplasmonic nanolasers based on Mie resonances, anapole states, bound states in the continuum, and the physics of topological phases.

Details

Language :
English
ISSN :
21928614
Volume :
10
Issue :
14
Database :
OpenAIRE
Journal :
Nanophotonics
Accession number :
edsair.doi.dedup.....856ea1b8796a9260a77b3ed6a2f9996e