Back to Search Start Over

Elucidation of larvicidal potential of metallic and environment friendly food-grade nanostructures against Aedes albopictus

Authors :
Toqeer Ahmed
Z. Imran
Shabbar Abbas
Shaheen Akhtar
Muhammad Zeeshan Hyder
Tayyaba Yasmin
Assad Hafeez Bhatti
Shahid Bilal Butt
Irfan Liaqat
Source :
Environmental Geochemistry and Health. 43:1903-1925
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

To combat health challenges associated with mosquito-borne diseases, the larvicidal activity of metallic nanoparticles, food-grade polymeric nano-capsules and insecticides was investigated against larvae of Aedes albopictus as an effective alternate control approach. The Ae. albopictus was identified using sequencing and phylogenetic analyses of COXI, CYTB and ITS2 genes. The characterization of synthesized nanostructures was performed through Zetasizer, UV-VIS spectroscopy, atomic force microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The mosquito larvae were exposed to varying concentration of nanostructures and insecticides, and their percentage mortality was evaluated at different time intervals of 24 h and 48 h exposure. The highest efficacy was observed in zinc oxide nanoparticles (ZnO-NPs) and polymeric nanocapsules FG-Cur E-III (LC50 = 0.24 mg/L, LC90 = 0.6 mg/L) and (LC50 = 3.8 mg/L, LC90 = 9.33 mg/L), respectively, after 24 h; while (LC50 = 0.18 mg/L, LC90 = 0.43 mg/L) and (LC50 = 1.95 mg/L, LC90 = 6.46 mg/L), respectively, after 48 h against fourth instar larvae of Ae. albopictus. Ag, CuO, NiTiO3 and CoTiO3 nanoparticles evaluated in this study also showed promising larvicidal activity. Although ZnO-NPs proved to be effective larvicides, their possible toxicity (producing ROS species) can limit their use. The curcumin nanostructures (FG-Cur E-III) stabilized by food-grade materials are thought to exert their larvicidal activity by binding to sterol carrier protein-2, and depriving the larvae from the essential dietary cholesterol, and bears effective larvicidal potential as safe alternative for chemical larvicides, due to their environment friendly, food-grade and easy biodegradability.

Details

ISSN :
15732983 and 02694042
Volume :
43
Database :
OpenAIRE
Journal :
Environmental Geochemistry and Health
Accession number :
edsair.doi.dedup.....858dc07464dc20ebea3a646e77bd8c47
Full Text :
https://doi.org/10.1007/s10653-020-00771-4