Back to Search
Start Over
Excitation of Highly Conjugated (Porphinato)palladium(II) and (Porphinato)platinum(II) Oligomers Produces Long-Lived, Triplet States at Unit Quantum Yield That Absorb Strongly over Broad Spectral Domains of the NIR
- Source :
- The Journal of Physical Chemistry B. 114:14696-14702
- Publication Year :
- 2010
- Publisher :
- American Chemical Society (ACS), 2010.
-
Abstract
- Transient dynamical studies of bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethyne (PPd(2)), 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)palladium(II) (PPd(3)), bis[(5,5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethyne (PPt(2)), and 5,15-bis{[(5'-10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II)]ethynyl}(10,20-bis(2,6-bis(3,3-dimethylbutoxy)phenyl)porphinato)platinum(II) (PPt(3)) show that the electronically excited triplet states of these highly conjugated supermolecular chromophores can be produced at unit quantum yield via fast S(1) → T(1) intersystem crossing dynamics (τ(isc): 5.2-49.4 ps). These species manifest high oscillator strength T(1) → T(n) transitions over broad NIR spectral windows. The facts that (i) the electronically excited triplet lifetimes of these PPd(n) and PPt(n) chromophores are long, ranging from 5 to 50 μs, and (ii) the ground and electronically excited absorptive manifolds of these multipigment ensembles can be extensively modulated over broad spectral domains indicate that these structures define a new precedent for conjugated materials featuring low-lying π-π* electronically excited states for NIR optical limiting and related long-wavelength nonlinear optical (NLO) applications.
Details
- ISSN :
- 15205207 and 15206106
- Volume :
- 114
- Database :
- OpenAIRE
- Journal :
- The Journal of Physical Chemistry B
- Accession number :
- edsair.doi.dedup.....859f743913683666a0b66090aef03616
- Full Text :
- https://doi.org/10.1021/jp102901u