Back to Search Start Over

DNA-Encoded Library-Derived DDR1 Inhibitor Prevents Fibrosis and Renal Function Loss in a Genetic Mouse Model of Alport Syndrome

Authors :
Bernd Kuhn
Franziska Weibel
Rodolfo Gasser
Marco Prunotto
Solange Moll
Martine Stihle
R. Daniel Bonfil
Bernard Gsell
Christian Faul
Remo Hochstrasser
Sabine Uhles
Guy Georges
Ann C. Petersen
Javier Varona Santos
Ricardo Hermosilla
Alexander L. Satz
Hans Richter
Rafael Fridman
Marc Bedoucha
Markus G. Rudolph
Bernd Buettelmann
Anja Harmeier
Martin Ritter
Melanie N. Hug
Alessia Fornoni
Judith Molina-David
Jin Ju Kim
Sylwia Huber
Buelent Kocer
Dominique Burger
Source :
ACS Chemical Biology, ACS Chemical Biology, Vol. 14, No 1 (2019) pp. 37-49
Publication Year :
2018
Publisher :
American Chemical Society (ACS), 2018.

Abstract

The importance of Discoidin Domain Receptor 1 (DDR1) in renal fibrosis has been shown via gene knockout and use of antisense oligonucleotides; however, these techniques act via a reduction of DDR1 protein, while we prove the therapeutic potential of inhibiting DDR1 phosphorylation with a small molecule. To date, efforts to generate a selective small-molecule to specifically modulate the activity of DDR1 in an in vivo model have been unsuccessful. We performed parallel DNA encoded library screens against DDR1 and DDR2, and discovered a chemical series that is highly selective for DDR1 over DDR2. Structure-guided optimization efforts yielded the potent DDR1 inhibitor 2.45, which possesses excellent kinome selectivity (including 64-fold selectivity over DDR2 in a biochemical assay), a clean in vitro safety profile, and favorable pharmacokinetic and physicochemical properties. As desired, compound 2.45 modulates DDR1 phosphorylation in vitro as well as prevents collagen-induced activation of renal epithelial cells expressing DDR1. Compound 2.45 preserves renal function and reduces tissue damage in Col4a3-/- mice (the preclinical mouse model of Alport syndrome) when employing a therapeutic dosing regime, indicating the real therapeutic value of selectively inhibiting DDR1 phosphorylation in vivo. Our results may have wider significance as Col4a3-/- mice also represent a model for chronic kidney disease, a disease which affects 10% of the global population.

Details

ISSN :
15548937 and 15548929
Volume :
14
Database :
OpenAIRE
Journal :
ACS Chemical Biology
Accession number :
edsair.doi.dedup.....85d66479d1a5d10d891a793eb7b70967
Full Text :
https://doi.org/10.1021/acschembio.8b00866