Back to Search
Start Over
Phonem-Based Isolated Turkish Word Recognition With Subspace Classifier
- Publication Year :
- 2009
- Publisher :
- IEEE, 2009.
-
Abstract
- IEEE 17th Signal Processing and Communications Applications Conference -- APR 09-11, 2009 -- Antalya, TURKEY WOS: 000273935600091 In this studs,, phoneme-based isolated Turkish word recognition with Common Vector Approach (CVA) has been performed. CVA has been used to classify phonemes. The phoneme sequence obtained from the classification is decoded into the word using redundant hash addressing (RHA). The phoneme-based speech recognition is more suitable than the word-based speech recognition for implementing applications that use different words in their dictionaries. For that reason in this study the CVA is evaluated to see whether it could be used in phoneme-based word recognition or not. In the experimental study we obtained the word recognition rates 70-80% from random v selected words in METU database. It might be possible to obtain higher recognition rates by improving the CVA and by using different word decoding techniques. IEEE
- Subjects :
- Computer science
business.industry
Speech recognition
Speech coding
Hash function
Word error rate
computer.software_genre
Intelligent word recognition
ComputingMethodologies_PATTERNRECOGNITION
Word recognition
Pattern recognition (psychology)
Artificial intelligence
Hidden Markov model
business
computer
Word (computer architecture)
Natural language
Natural language processing
Subjects
Details
- Language :
- Turkish
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....85ed0b3243bae18cb30175c7b3ac5b87