Back to Search
Start Over
Lectures on Chow-Witt groups
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- In these lectures, we provide a toolkit to work with Chow-Witt groups, and more generally with the homology and cohomology of the Rost-Schmid complex associated to Milnor-Witt $K$-theory.<br />Comment: This is an almost final version of the lecture notes on Chow-Witt groups that are going to appear in the proceedings "Motivic homotopy theory and refined enumerative geometry"
- Subjects :
- Pure mathematics
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
[MATH.MATH-AT] Mathematics [math]/Algebraic Topology [math.AT]
Homology (mathematics)
01 natural sciences
Mathematics::Algebraic Topology
[MATH.MATH-AC] Mathematics [math]/Commutative Algebra [math.AC]
Mathematics - Algebraic Geometry
Mathematics::Algebraic Geometry
Mathematics::K-Theory and Homology
0103 physical sciences
FOS: Mathematics
0101 mathematics
Algebraic Geometry (math.AG)
Mathematics
010102 general mathematics
Mathematics::Rings and Algebras
[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]
K-Theory and Homology (math.KT)
16. Peace & justice
Mathematics::Geometric Topology
Cohomology
[MATH.MATH-AT]Mathematics [math]/Algebraic Topology [math.AT]
Mathematics - K-Theory and Homology
010307 mathematical physics
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
Primary: 14C17, 14C25, 14F43, 19-06, 19G99. Secondary: 11E04, 11E39, 11E70
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....8699c7c94670df029d91f543d16f9c07